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These notes are primarily based on the textbook by Kundu et al. [1].

1 Fluid

1.1 Solids, Liquids, and Gases
A fluid deforms continuously under any nonzero shear stress. A
solid returns to a preferred shape when unloaded, if elastic. Liquids
are nearly incompressible and form a free surface in gravity. Gases
expand to fill their container.

1.2 Continuum Hypothesis
Although fluids are molecular, most macroscopic phenomena can
be modeled by treating them as continua when the Knudsen number
Kn = ℓ/𝐿 ≪ 1, where ℓ is the molecular mean free path and 𝐿 a
characteristic length.
For a gas with mean velocity u, the Maxwell velocity distribution is

𝑓 (v) d3𝑣 = 𝑛

(
𝑚

2𝜋𝑘𝐵𝑇

)3/2
exp

(
−𝑚 |v − u|2

2𝑘𝐵𝑇

)
d3𝑣,

with number density 𝑛, molecular mass𝑚, temperature𝑇 , and Boltz-
mann constant 𝑘𝐵 . When u = 0,

𝑓 (𝑣) =
∬

𝑎𝑛𝑔𝑙𝑒𝑠

𝑓 (v)𝑣2𝑑Ω = 4𝜋𝑛
(

𝑚

2𝜋𝑘𝐵𝑇

)3/2
𝑣2 exp

(
− 𝑚𝑣2

2𝑘𝐵𝑇

)
,

with mean speed

𝑣 =
1
𝑛

∫ ∞

0
𝑣 𝑓 (𝑣)𝑑𝑣 =

(
8𝑘𝐵𝑇
𝜋𝑚

)1/2
.

The molecular mean free path ℓ (hard-sphere model, diameter 𝑑) is

ℓ =
1

√
2𝑛𝜋𝑑2

.

1.3 Molecular Transport Phenomena
Random molecular motion produces diffusive fluxes of species, heat,
and momentum.

1.3.1 Species Diffusion (Fick’s Law). For mass fraction 𝑌 of a con-
stituent in a mixture,

J𝑚 = −𝜌 𝑘𝑚∇𝑌,

where J𝑚 is mass flux, 𝜌 is density, and 𝑘𝑚 is the mass diffusivity.

1.3.2 Heat Conduction (Fourier’s Law).

q = −𝑘∇𝑇,

with heat flux q and thermal conductivity 𝑘 .
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1.3.3 Momentum Diffusion (Newton’s Law of Viscosity). For simple
shear 𝑢 = 𝑢 (𝑦), the shear stress is

𝜏 = 𝜇
d𝑢
d𝑦
,

with dynamic viscosity 𝜇. The kinematic viscosity is

𝜈 ≡ 𝜇

𝜌
.

In gases, 𝜇 grows roughly as 𝑇 1/2 at fixed 𝑝 . In liquids, 𝜇 generally
decreases with 𝑇 .

1.4 Surface Tension
At an interface, unbalanced molecular forces produce an effective
surface tension 𝜎 (N/m), causing pressure jumps across curved sur-
faces (Laplace pressure). For a sphere of radius 𝑅,

𝑝in − 𝑝out =
2𝜎
𝑅
.

For a general interface with principal radii 𝑅1, 𝑅2,

𝑝in − 𝑝out = 𝜎
(

1
𝑅1

+ 1
𝑅2

)
.

1.5 Fluid Statics
Absolute pressure 𝑝 relates to gauge pressure by 𝑝gauge = 𝑝−𝑝atm. In
a fluid at rest, shear stresses vanish and the normal stress is isotropic.
Vertical force balance on a fluid element gives the hydrostatic rela-
tion

d𝑝
d𝑧

= −𝜌𝑔.

The total force due to pressure acting on a surface 𝐴 is

®𝐹 =

∫
𝐴

−𝑃 ®𝑛 𝑑𝐴,

where 𝑃 is the scalar pressure field, ®𝑛 is the outward unit normal.

®𝐹 =

∫
𝑉

∇ · (−𝑃I) 𝑑𝑉 =

∫
𝑉

−∇𝑃 𝑑𝑉 .

Thus, the pressure force per unit volume is

®𝑓 = −∇𝑃 .

1.6 Classical Thermodynamics
1.6.1 First Law (per unit mass).

d𝑞 + d𝑤 = d𝑒.

For a reversible, quasi-static compression/expansion with specific
volume 𝑣 = 1/𝜌 (volume per unit mass),

d𝑒 = d𝑞 − 𝑝 d𝑣 .

1.6.2 Equations of State. For a simple compressible substance (sin-
gle component), thermal and caloric equations of state is

𝑝 = 𝑝 (𝑣,𝑇 ), 𝑒 = 𝑒 (𝑝,𝑇 ) .
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1.6.3 Enthalpy and Specific Heats.

ℎ ≡ 𝑒 + 𝑝𝑣, 𝑐𝑝 ≡
(
𝜕ℎ

𝜕𝑇

)
𝑝

, 𝑐𝑣 ≡
(
𝜕𝑒

𝜕𝑇

)
𝑣

.

The subscript p signifies that the derivative is taken at constant
pressure. In reversible processes where the only work is 𝑝 d𝑣 ,

(const. pressure) d𝑞 = 𝑐𝑝 d𝑇, (const. volume) d𝑞 = 𝑐𝑣 d𝑇 .

1.6.4 Second Law (Entropy). For a reversible path 1 → 2,

𝑠2 − 𝑠1 =

∫ 2

1

d𝑞rev

𝑇
.

Clausius–Duhem inequality for arbitrary process,

𝑠2 − 𝑠1 ≥
∫ 2

1

d𝑞
𝑇
.

Transport coefficients must be positive, species diffusivity 𝑘𝑚 > 0,
thermal conductivity 𝑘 > 0, viscosity 𝜇 > 0.

𝑇 d𝑠 = d𝑞rev = d𝑒 + 𝑝 d𝑣 = dℎ − 𝑣 d𝑝.

For an ideal gas, ℎ = 𝑒 + 𝑝𝑣 = 𝑐𝑣 𝑇 + 𝑅𝑇 = 𝑐𝑝 𝑇 . Thus,

𝑑𝑠 = 𝑐𝑝
𝑑𝑇

𝑇
− 𝑅𝑑𝑝

𝑝
.

Integrating between (𝑇, 𝑝) and (𝑇𝑟 , 𝑝𝑟 ),

Δ𝑠 = 𝑐𝑝 ln
(
𝑇

𝑇𝑟

)
− 𝑅 ln

(
𝑝

𝑝𝑟

)
.

Define the potential temperature 𝜃 as

𝜃 =𝑇

(
𝑝0

𝑝

)𝜅
, 𝜅 =

𝑅

𝑐𝑝
.

Substituting into the entropy difference expression yields

Δ𝑠 = 𝑐𝑝 ln
(
𝜃

𝜃𝑟

)
.

1.6.5 Speed of Sound and Thermal Expansion.

𝑐2 ≡
(
𝜕𝑝

𝜕𝜌

)
𝑠

𝛼 ≡ − 1
𝜌

(
𝜕𝜌

𝜕𝑇

)
𝑝

.

1.7 Perfect Gas

𝑝 = 𝜌𝑅𝑇, 𝑅 = 𝑐𝑝 − 𝑐𝑣, 𝛾 ≡
𝑐𝑝

𝑐𝑣
.

Isentropic (adiabatic, frictionless) relations for constant 𝑐𝑝 , 𝑐𝑣 ,

𝑝

𝜌𝛾
= const,

𝑇

𝑇0
=

(
𝑝

𝑝0

) (𝛾−1)/𝛾
,

𝜌

𝜌0
=

(
𝑝

𝑝0

)1/𝛾
.

Speed of sound and expansion coefficient,

𝑐 =
√︁
𝛾𝑅𝑇, 𝛼 =

1
𝑇
.

1.8 Stability of Stratified Fluid Media
We consider a fluid whose density 𝜌 varies with height 𝑧. Stability
is tested by displacing a small parcel vertically and examining the
restoring buoyancy force.

1.8.1 Brunt–Väisälä (Buoyancy) Frequency. Define

𝑁 2 (𝑧0) =
𝑔

𝜌

(
𝑑𝜌𝑎

𝑑𝑧
− 𝑑𝜌

𝑑𝑧

)
𝑧0

.

• 𝑁 2 > 0: parcel oscillates with frequency 𝑁 ⇒ stable.
• 𝑁 2 = 0: no restoring force⇒ neutral.
• 𝑁 2 < 0: exponential growth of displacement⇒ unstable.

Buoyancy (Acceleration)

𝑏 = −𝑔 𝜌 − 𝜌0

𝜌
≈ 𝑔 𝜌0 − 𝜌

𝜌0
,

where 𝑔 is the gravitational acceleration, 𝜌 is the parcel density, and
𝜌0 is the ambient density. Under the ideal gas assumption,

𝑏 = −𝑔 𝑇0 −𝑇
𝑇0

= −𝑔 𝜃0 − 𝜃
𝜃0

.

Thus, 𝑏 > 0 implies upward acceleration of lighter/warmer fluid
parcels, while 𝑏 < 0 corresponds to downward acceleration of
denser/colder parcels.

1.8.2 Potential Temperature 𝜃 . Define 𝜃 by adiabatically bringing a
parcel at (𝑝 (𝑧),𝑇 (𝑧)) to a reference pressure 𝑝0

𝑇 (𝑧) = 𝜃 (𝑧)
(
𝑝 (𝑧)
𝑝0

) (𝛾−1)/𝛾
.

Differentiating with hydrostatic balance and perfect-gas law yields

𝑇

𝜃

d𝜃
d𝑧

=
d𝑇
d𝑧

+ 𝑔

𝑐𝑝
≡ 𝐺 − Γ𝑎,

where 𝐺 = d𝑇 /d𝑧 (lapse rate) and Γ𝑎 = −𝑔/𝑐𝑝 (adiabatic lapse rate).
Thus, stable if d𝜃

d𝑧 > 0, neutral if d𝜃
d𝑧 = 0, unstable if d𝜃

d𝑧 < 0.

1.8.3 Potential Density 𝜌𝜃 . Define 𝜌𝜃 by adiabatically bringing the
parcel to 𝑝0

𝜌 (𝑧) = 𝜌𝜃 (𝑧)
(
𝑝 (𝑧)
𝑝0

)1/𝛾
, − 1

𝜌𝜃

d𝜌𝜃
d𝑧

=
1
𝜃

d𝜃
d𝑧

⇒ stable if
d𝜌𝜃
d𝑧

< 0.

Oceanic Form (including compressibility). Using 𝑐−2 = (𝜕𝜌/𝜕𝑝)𝑠 and
hydrostatic balance, a practical criterion is

d𝜌𝜃
d𝑧

=
d𝜌
d𝑧

+ 𝜌𝑔

𝑐2 ⇒ stable if
d𝜌𝜃
d𝑧

< 0.

1.8.4 Scale Height of the Atmosphere. With 𝑇 constant and hydro-
static balance,

d𝑝
d𝑧

= −𝜌𝑔 = − 𝑝𝑔
𝑅𝑇

⇒ 𝑝 (𝑧) = 𝑝0 exp
(
− 𝑧
𝐻

)
, 𝐻 ≡ 𝑅𝑇

𝑔
.

2 Cartesian Tensors

2.1 Gradient, Divergence, and Curl

∇ = e1
𝜕

𝜕𝑥1
+ e2

𝜕

𝜕𝑥2
+ e3

𝜕

𝜕𝑥3
=

3∑︁
𝑖=1

e𝑖
𝜕

𝜕𝑥𝑖
.

The divergence ∇·T of a second-order tensor T = {𝑇𝑖 𝑗 } is the vector
whose 𝑗-component is

(∇·T) · e𝑗 =
3∑︁
𝑖=1

𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖
.
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(∇ × u) · e𝑖 =
3∑︁
𝑗=1

3∑︁
𝑘=1

𝜀𝑖 𝑗𝑘
𝜕𝑢𝑘

𝜕𝑥 𝑗
.

A vector field u is called solenoidal (divergence free) if ∇·u = 0, and
irrotational (curl free) if ∇ × u = 0.

2.2 Gauss’ Theorem∭
𝑉

(
3∑︁
𝑖=1

𝜕𝑄𝑖

𝜕𝑥𝑖

)
𝑑𝑉 =

∬
𝐴

(
3∑︁
𝑖=1

𝑛𝑖𝑄𝑖

)
𝑑𝐴 =

∬
𝐴

n·Q𝑑𝐴 =

∭
𝑉

(∇·Q)𝑑𝑉 .

∇·𝑄 = lim
𝑉→0

1
𝑉

∬
𝐴

n·𝑄 𝑑𝐴, ∇×𝑄 = lim
𝑉→0

1
𝑉

∬
𝐴

n×𝑄 𝑑𝐴.

2.3 Stokes’ Theorem∬
𝐴

(
∇ × u

)
·n d𝐴 =

∮
𝐶

u·t d𝑠 .

The right-hand side is called the circulation of u about 𝐶 .

n·
(
∇ × u

)
= lim

𝐴→0

1
𝐴

∮
𝐶

u·t d𝑠 .

3 Kinematics

3.1 Particle and Field Descriptions of Fluid Motion
3.1.1 Lagrangian Description. Based on particle motion,

𝒓 = 𝒓 (𝑡 ; 𝒓0, 𝑡0).

Here 𝒓0 and 𝑡0 are boundary/initial–condition parameters.

𝒖 =
𝑑 𝒓 (𝑡 ; 𝒓0, 𝑡0)

𝑑𝑡
, 𝒂 =

𝑑2 𝒓 (𝑡 ; 𝒓0, 𝑡0)
𝑑𝑡2 .

Any scalar, vector, or tensor field 𝐹 may depend on the paths of the
relevant fluid particles and on time, i.e. 𝐹 = 𝐹 [𝒓 (𝑡 ; 𝒓0, 𝑡0), 𝑡].

3.1.2 Eulerian Description. The Eulerian description focuses on
properties at locations of interest and uses the four independent
variables (𝒙, 𝑡) (three spatial coordinates and time). Thus a field
quantity is written as 𝐹 = 𝐹 (𝒙, 𝑡).

3.1.3 Relating the Two Descriptions.

𝐹 [𝒓 (𝑡 ; 𝒓0, 𝑡0), 𝑡] = 𝐹 (𝒙, 𝑡) when 𝒙 = 𝒓 (𝑡 ; 𝒓0, 𝑡0) .

𝑑

𝑑𝑡
𝐹 [𝒓 (𝑡 ; 𝒓0, 𝑡0), 𝑡] =

𝜕𝐹

𝜕𝑡
+ 𝜕𝐹

𝜕𝑥1
𝑢1+

𝜕𝐹

𝜕𝑥2
𝑢2+

𝜕𝐹

𝜕𝑥3
𝑢3 =

𝜕𝐹

𝜕𝑡
+𝒖·∇𝐹 ≡ 𝐷𝐹 (𝒙, 𝑡)

𝐷𝑡
,

which defines the Eulerian total material/substantial/particle deriva-
tive 𝐷/𝐷𝑡 . The first term, 𝜕𝐹/𝜕𝑡 , is the unsteady local rate of change
at fixed 𝒙 , vanishing for steady fields. The second term, 𝒖 · ∇𝐹 , is
the advective rate of change due to motion, vanishing when 𝐹 is
spatially uniform, the fluid is at rest, or 𝒖 ⊥ ∇𝐹 .

3.2 Flow Lines, Fluid Acceleration, and Galilean
Transformation

In the Eulerian description of fluid motion, three families of curves
are commonly used: streamlines, path lines, and streak lines. Assume
the velocity field 𝒖 (𝒙, 𝑡) is known for all 𝒙 and 𝑡 in the region of
interest. When the flow is steady, these three curves coincide. In
unsteady flows, they generally differ.

3.2.1 Streamlines. A streamline is a curve everywhere tangent to
the instantaneous velocity field. If 𝑑𝒔 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) is the arc-length
element along a streamline and 𝒖 = (𝑢, 𝑣,𝑤) is the local velocity,
the tangency requirement gives

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
,

and equivalently 𝒖 × 𝑑𝒔 = 0. If the seeds lie on a closed curve 𝐶 ,
the swept surface forms a stream tube. No fluid crosses its mantle
because 𝒖 is everywhere tangent to it.

3.2.2 Path Lines. A path line is the trajectory of a material particle
of fixed identity. Let 𝒓 (𝑡 ; 𝒓0, 𝑡0) denote the position at time 𝑡 of the
particle that was at 𝒓0 at the reference time 𝑡0. The path line satisfies

𝑑𝒓

𝑑𝑡
= 𝒖 (𝒓 (𝑡 ; 𝒓0, 𝑡0), 𝑡) , 𝒓 (𝑡0; 𝒓0, 𝑡0) = 𝒓0 .

3.2.3 Streak Lines. A streak line at time 𝑡 through a fixed point 𝒙0
is the locus of all particles that have passed or will pass through 𝒙0.
Equivalently, 𝒓 (𝑡 ; 𝒙0, 𝑡0) = 𝒙 with the condition 𝒓 (𝑡0; 𝒙0, 𝑡0) = 𝒙0.

3.2.4 Material Acceleration and Galilean Invariance. The Eulerian
field form of the material acceleration is

𝐷𝒖

𝐷𝑡
=

𝜕𝒖

𝜕𝑡
+ (𝒖 ·∇) 𝒖,

where the first term is the unsteady local acceleration and the sec-
ond is the advective acceleration. The advective term is nonlinear
(quadratic in 𝒖) and vanishes if 𝒖 = 0 or if 𝒖 is spatially uniform.

Consider two Cartesian frames with parallel axes. A stationary
frame𝑂𝑥𝑦𝑧 and a frame𝑂 ′𝑥 ′𝑦′𝑧′ translating with constant velocity
𝑼 relative to𝑂𝑥𝑦𝑧. If 𝒖 and 𝒖′ are the velocities observed in the two
frames at corresponding locations and times, then

𝒖 (𝒙, 𝑡) = 𝑼 + 𝒖′ (𝒙′, 𝑡 ′), 𝒙 = 𝒙′ + 𝑼 𝑡 + 𝒙′
0, 𝑡 = 𝑡 ′ .

Under this Galilean transformation, the material acceleration

𝐷𝒖

𝐷𝑡

����
𝑂𝑥𝑦𝑧

=
𝜕𝒖′

𝜕𝑡
+ (𝒖′ ·∇′) 𝜕𝒙

′

𝜕𝑡
+ (𝒖′ ·∇′) (𝑼 + 𝒖′) = 𝐷𝒖′

𝐷𝑡 ′

����
𝑂′𝑥 ′𝑦′𝑧′

.

3.3 Strain and Rotation Rates
Kinematically, the relative motion between neighboring points can
be decomposed into parts due to local deformation and rotation. Let
𝒖 (𝒙, 𝑡) be the velocity at point 𝑂 with position 𝒙 , and let 𝒖 + d𝒖 be
the velocity at a nearby point 𝑃 at 𝒙 + d𝒙 .

d𝑢𝑖 =
𝜕𝑢𝑖

𝜕𝑥 𝑗
d𝑥 𝑗 .

The velocity gradient tensor decomposes uniquely into symmetric
(strain-rate) and antisymmetric (rotation) parts.

𝜕𝑢𝑖

𝜕𝑥 𝑗
= 𝑆𝑖 𝑗 + 1

2𝑅𝑖 𝑗 , 𝑆𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
, 𝑅𝑖 𝑗 =

𝜕𝑢𝑖

𝜕𝑥 𝑗
−
𝜕𝑢 𝑗

𝜕𝑥𝑖
.

Here 𝑆𝑖 𝑗 governs fluid-element deformation and is the quantity that
couples to stress in the equations of motion, whereas 𝑅𝑖 𝑗 represents
rigid-body-like local rotation.
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3.3.1 Volumetric Strain Rate. For a small control volume d𝑉 =

d𝑥1 d𝑥2 d𝑥3 carried with the fluid,
1

d𝑉
D
D𝑡

(d𝑉 ) = 1
d𝑥𝑖

D
D𝑡

(d𝑥𝑖 ) =
𝜕𝑢1

𝜕𝑥1
+ 𝜕𝑢2

𝜕𝑥2
+ 𝜕𝑢3

𝜕𝑥3
=
𝜕𝑢𝑖

𝜕𝑥𝑖
= 𝑆𝑖𝑖 ,

which is ∇ · 𝒖 and is independent of coordinate orientation.

3.3.2 Shear Strain Rates. The average rate at which two material
line segments initially parallel to 𝑥𝑖 and 𝑥 𝑗 rotate toward or away
from each other is

1
2

D(𝛼 + 𝛽)
D𝑡

=
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
= 𝑆𝑖 𝑗 (𝑖 ≠ 𝑗),

where 𝛼 is angle by which the line initially parallel to 𝑥𝑖 rotates
toward 𝑥 𝑗 and 𝛽 is angle by which the line initially parallel to 𝑥 𝑗
rotates toward 𝑥𝑖 .

3.3.3 Rotation Tensor, Vorticity, and Irrotationality. The tensor 𝑅𝑖 𝑗
corresponds to the vorticity vector 𝝎 = ∇ × 𝒖 via

𝑅𝑖 𝑗 = −𝜀𝑖 𝑗𝑘 𝜔𝑘 =


0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

 .
Fluid motion is irrotational if

𝝎 = 0 ⇐⇒ 𝑅𝑖 𝑗 =
𝜕𝑢𝑖

𝜕𝑥 𝑗
−
𝜕𝑢 𝑗

𝜕𝑥𝑖
= 0,

in which case 𝒖 can be represented as 𝒖 = ∇𝜙 .

3.3.4 Circulation. The circulation Γ measures the net rotation con-
tent within a closed curve 𝐶 .

Γ ≡
∮
𝐶

𝒖 · d𝒔 =
∬
𝐴

𝝎 · 𝒏 d𝐴.

4 Conservation Laws

4.1 Conservation of Mass
Let 𝑉 (𝑡) denote a material volume—the volume occupied by a spe-
cific collection of fluid particles. Such a volume moves and deforms
with the flow so that it always contains the same mass elements.
Consequently, the material surface 𝐴(𝑡) bounding 𝑉 (𝑡) moves ev-
erywhere with the local fluid velocity 𝒖.

d
d𝑡

∫
𝑉 (𝑡 )

𝜌 (𝒙, 𝑡) d𝑉 = 0.

Using the Reynolds transport theorem,∫
𝑉 (𝑡 )

𝜕𝜌 (𝒙, 𝑡)
𝜕𝑡

d𝑉 +
∫
𝐴(𝑡 )

𝜌 (𝒙, 𝑡) 𝒖 (𝒙, 𝑡) ·𝒏 d𝐴 = 0.

This expresses the balance between the integrated density change
within 𝑉 (𝑡) and the integrated flux through its surface 𝐴(𝑡). Apply-
ing Gauss’ divergence theorem,∫

𝑉 (𝑡 )

[
𝜕𝜌 (𝒙, 𝑡)
𝜕𝑡

+ ∇·
(
𝜌 (𝒙, 𝑡) 𝒖 (𝒙, 𝑡)

) ]
d𝑉 = 0,

yielding the continuity equation
𝜕𝜌 (𝒙, 𝑡)
𝜕𝑡

+ ∇·
(
𝜌 (𝒙, 𝑡) 𝒖 (𝒙, 𝑡)

)
= 0.

1
𝜌 (𝒙, 𝑡)

𝐷𝜌 (𝒙, 𝑡)
𝐷𝑡

+ ∇·𝒖 (𝒙, 𝑡) = 0.

For constant-density flow, and more generally, for incompressible
flow,

𝐷𝜌

𝐷𝑡
≡ 𝜕𝜌

𝜕𝑡
+ 𝒖 ·∇𝜌 = 0, ∇·𝒖 = 0.

4.2 Conservation of Momentum

𝑑

𝑑𝑡

∫
𝑉 (𝑡 )

𝜌 (x, 𝑡) u(x, 𝑡) 𝑑𝑉 =

∫
𝑉 (𝑡 )

𝜌 (x, 𝑡) g𝑑𝑉 +
∫
𝐴(𝑡 )

f (n, x, 𝑡) 𝑑𝐴.

Using the Reynolds transport theorem,∫
𝑉 (𝑡 )

𝜕

𝜕𝑡
(𝜌u) 𝑑𝑉 +

∫
𝐴(𝑡 )

𝜌u (u·n) 𝑑𝐴 =

∫
𝑉 (𝑡 )

𝜌g𝑑𝑉 +
∫
𝐴(𝑡 )

f (n, x, 𝑡) 𝑑𝐴.

For an arbitrarilymoving control volume𝑉 ∗ (𝑡) with boundary𝐴∗ (𝑡)
and control-surface velocity 𝜷 (x, 𝑡), start from the RTT form∫

𝑉 ∗ (𝑡 )

𝜕

𝜕𝑡
(𝜌u) 𝑑𝑉 =

𝑑

𝑑𝑡

∫
𝑉 ∗ (𝑡 )

𝜌u𝑑𝑉 −
∫
𝐴∗ (𝑡 )

𝜌u (𝜷 ·n) 𝑑𝐴,

and choose 𝑉 ∗ (𝑡) instantaneously coincident with 𝑉 (𝑡) so that,

𝑑

𝑑𝑡

∫
𝑉 ∗ (𝑡 )

𝜌u𝑑𝑉+
∫
𝐴∗ (𝑡 )

𝜌u
[
(u−𝜷)·n

]
𝑑𝐴 =

∫
𝑉 ∗ (𝑡 )

𝜌g𝑑𝑉+
∫
𝐴∗ (𝑡 )

f 𝑑𝐴.

Choosing 𝜷 = u recovers the material-volume form.

4.2.1 Body and Surface Forces. Body forces act without contact. A
conservative body force admits a potential Φ s.t.

g = −∇Φ

Surface forces act through contact and are expressed via the Cauchy
stress tensor T = [𝑇𝑖 𝑗 ]. The traction (force per unit area) is

𝑓𝑗 = 𝑛𝑖𝑇𝑖 𝑗 .

4.2.2 Differential Form (Cauchy Momentum Equation).∫
𝐴(𝑡 )

𝜌 u (u·n) 𝑑𝐴 =

∫
𝑉 (𝑡 )

∇· (𝜌 uu) 𝑑𝑉 =

∫
𝑉 (𝑡 )

𝜕

𝜕𝑥𝑖

(
𝜌𝑢𝑖𝑢 𝑗

)
𝑑𝑉 ,∫

𝐴(𝑡 )
f 𝑑𝐴 =

∫
𝐴(𝑡 )

𝑛𝑖𝑇𝑖 𝑗 𝑑𝐴 =

∫
𝑉 (𝑡 )

𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖
𝑑𝑉 .

∫
𝑉 (𝑡 )

[
𝜕

𝜕𝑡
(𝜌𝑢 𝑗 ) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑢 𝑗 ) − 𝜌𝑔 𝑗 −

𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖

]
𝑑𝑉 = 0.

𝜕

𝜕𝑡
(𝜌𝑢 𝑗 ) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑢 𝑗 ) = 𝜌𝑔 𝑗 +

𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖
.

Using continuity,

𝜕𝜌

𝜕𝑡
+ 𝜕(𝜌𝑢𝑖 )

𝜕𝑥𝑖
= 0,

giving the Cauchy equation of motion

𝜌
𝐷𝑢 𝑗

𝐷𝑡
= 𝜌 𝑔 𝑗 +

𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖
,

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑢𝑖

𝜕

𝜕𝑥𝑖
.
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4.3 Constitutive Equation for a Newtonian Fluid
The stress at a point is specified by the nine components of the stress
tensor 𝑇𝑖 𝑗 , where the first index denotes the outward normal direc-
tion of the surface and the second index the direction in which the
stress acts. The diagonal components𝑇11,𝑇22,𝑇33 are normal stresses
and the off–diagonal components are shear stresses. Considering
the rotational dynamics of an infinitesimal fluid element shows that
the stress tensor is symmetric,

𝑇𝑖 𝑗 =𝑇𝑗𝑖 ,

so there are only six independent components. A constitutive equa-
tion relates stress and deformation. In a fluid at rest, stress is isotropic.

𝑇𝑖 𝑗 = −𝑝 𝛿𝑖 𝑗 .
When the fluid moves, additional viscous stresses 𝜎𝑖 𝑗 appear, both
normal and shear.

𝑇𝑖 𝑗 = −𝑝 𝛿𝑖 𝑗 + 𝜎𝑖 𝑗 .
Galilean invariance requires 𝜎𝑖 𝑗 to depend on velocity gradients.
Moreover, only shape change generates stress, so only the symmetric
part of the velocity gradient.

𝜎𝑖 𝑗 = 𝐾𝑖 𝑗𝑚𝑛 𝑆𝑚𝑛,

where 𝐾𝑖 𝑗𝑚𝑛 is a fourth-order tensor that may depend on the local
thermodynamic state. In an isotropic medium 𝐾𝑖 𝑗𝑚𝑛 must be an
isotropic tensor, which has the form

𝐾𝑖 𝑗𝑚𝑛 = 𝜆 𝛿𝑖 𝑗𝛿𝑚𝑛 + 𝜇 𝛿𝑖𝑚𝛿 𝑗𝑛 + 𝛾 𝛿𝑖𝑛𝛿 𝑗𝑚 .
Symmetry of 𝜎𝑖 𝑗 implies 𝐾𝑖 𝑗𝑚𝑛 is symmetric in (𝑖, 𝑗), which forces

𝛾 = 𝜇.

Thus,
𝜎𝑖 𝑗 = 2𝜇 𝑆𝑖 𝑗 + 𝜆 𝑆𝑚𝑚 𝛿𝑖 𝑗 , 𝑆𝑚𝑚 ≡ ∇·u.
𝑇𝑖 𝑗 = −𝑝 𝛿𝑖 𝑗 + 2𝜇 𝑆𝑖 𝑗 + 𝜆 𝑆𝑚𝑚 𝛿𝑖 𝑗 .

Taking the trace,

𝑇𝑖𝑖 = −3𝑝 + (2𝜇 + 3𝜆) 𝑆𝑚𝑚 .
Define the mean / mechanical pressure as

𝑝 ≡ − 1
3 𝑇𝑖𝑖 ,

so that
𝑝 − 𝑝 =

(
2
3 𝜇 + 𝜆

)
∇·u.

For compressible flow, the difference 𝑝 − 𝑝 relates to dilatation via
the bulk viscosity

𝜇𝑏 ≡ 𝜆 + 2
3 𝜇.

The Stokes assumption, 𝜆 + 2
3 𝜇 = 0, is often adequate when 𝜇𝑏 or

the dilatation rate is small. Without invoking Stokes’ assumption,

𝑇𝑖 𝑗 = −𝑝 𝛿𝑖 𝑗 + 𝜎𝑖 𝑗 = −𝑝 𝛿𝑖 𝑗 + 2𝜇
(
𝑆𝑖 𝑗 − 1

3𝑆𝑚𝑚𝛿𝑖 𝑗
)
+ 𝜇𝑏 𝑆𝑚𝑚 𝛿𝑖 𝑗 .

This linear relation reproduces 𝜎 = 𝜇 (d𝑢/d𝑦) for simple shear.
Fluids are called Newtonian.
Non-Newtonian Behavior.
Power-Law Fluids. For a unidirectional shear 𝑢 = (𝑢1 (𝑥2), 0, 0),

𝜎12 = 𝜂 ¤𝛾 =𝑚 ¤𝛾 𝑛, ¤𝛾 ≡ 𝜕𝑢1

𝜕𝑥2
,

with 𝑛 = 1 Newtonian behavior, 𝑛 < 1 (shear-thinning) and 𝑛 > 1
(shear-thickening) common in polymeric and particulate systems.

Memory/Viscoelasticity. Linear viscoelastic responses can be writ-
ten with a tensorial relaxation modulus 𝐾𝑖 𝑗𝑚𝑛 (𝑡 − 𝑡 ′) as

𝜎𝑖 𝑗 (𝑡) =
∫ 𝑡

−∞
𝐾𝑖 𝑗𝑚𝑛 (𝑡 − 𝑡 ′) 𝑆𝑚𝑛 (𝑡 ′) d𝑡 ′ .

Normal-Stress Differences in Shear. Even in simple shear, one may
observe nonzero𝑇11−𝑇22 (first normal-stress difference) and𝑇22−𝑇33
(second normal-stress difference).

4.4 Navier-Stokes Momentum Equation
The momentum conservation equation for a Newtonian fluid

𝜌

(
𝜕𝑢 𝑗

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢 𝑗

𝜕𝑥𝑖

)
= 𝜌 𝑔 𝑗 −

𝜕𝑝

𝜕𝑥 𝑗
+ 𝜕

𝜕𝑥𝑖

[
𝜇

(
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖

𝜕𝑥 𝑗

)
+

(
𝜇𝑣 −

2
3
𝜇

) (
𝜕𝑢𝑚

𝜕𝑥𝑚

)
𝛿𝑖 𝑗

]
.

When temperature differences within the flow are small,

𝜌
𝐷𝑢 𝑗

𝐷𝑡
= 𝜌 𝑔 𝑗 −

𝜕𝑝

𝜕𝑥 𝑗
+ 𝜇

𝜕2𝑢 𝑗

𝜕𝑥2
𝑖

+
(
𝜇𝑣 +

1
3
𝜇

)
𝜕

𝜕𝑥 𝑗

(
𝜕𝑢𝑚

𝜕𝑥𝑚

)
,

and, for incompressible flow, the vector form

𝜌
𝐷𝒖

𝐷𝑡
= 𝜌 𝒈 − ∇𝑝 + 𝜇 ∇2𝒖 .

For incompressible flow, the net viscous force per unit volume

𝜇
𝜕2𝑢 𝑗

𝜕𝑥2
𝑖

= 𝜇
𝜕

𝜕𝑥𝑖

(
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖

𝜕𝑥 𝑗

)
= 2𝜇

𝜕𝑆𝑖 𝑗

𝜕𝑥𝑖

= − 𝜇 𝜀 𝑗𝑖𝑘
𝜕𝜔𝑘

𝜕𝑥𝑖
, i.e., 𝜇 ∇2𝒖 = − 𝜇 ∇ × 𝝎,

where 𝑆𝑖 𝑗 is the strain-rate tensor and 𝝎 = ∇ × 𝒖 is the vorticity.
Although rigid-body rotation does not appear in the Newtonian
stress, spatial derivatives of the vorticity determine the viscous force.
When viscous effects are negligible, e.g., many exterior flows away
from solid boundaries, Euler equation

𝜌
𝐷𝒖

𝐷𝑡
= 𝜌 𝒈 − ∇𝑝.

4.5 Special Forms of the Equations
4.5.1 Angular Momentum Principle for a Stationary Control Volume.
In solid mechanics one has

𝑑H
𝑑𝑡

= M, H ≡
∫
𝑉 (𝑡 )

(
r × 𝜌u

)
𝑑𝑉 ,

whereM is the torque of external forces about a chosen axis, r is the
position vector from that axis, and u is the velocity field. Applying
the Reynolds transport theorem and specializing to a stationary
control volume with fixed surface 𝐴𝑜 and volume 𝑉𝑜 gives
𝑑

𝑑𝑡

∫
𝑉𝑜

(
r×𝜌u

)
𝑑𝑉+

∫
𝐴𝑜

(
r×𝜌u

)
(u·n) 𝑑𝐴 =

∫
𝑉𝑜

(
r×𝜌g

)
𝑑𝑉+

∫
𝐴𝑜

(
r×f

)
𝑑𝐴.

4.5.2 Bernoulli Equations. Consider inviscid flow with gravity as
the only body force. The Euler equations are

𝜕𝑢 𝑗

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢 𝑗

𝜕𝑥𝑖
= − 1

𝜌

𝜕𝑝

𝜕𝑥 𝑗
− 𝜕Φ

𝜕𝑥 𝑗
, Φ ≡ 𝑔𝑧.

If the flow is barotropic, 𝜌 = 𝜌 (𝑝), then
𝜕

𝜕𝑥 𝑗

(∫ 𝑝

𝑝𝑜

𝑑𝑝′

𝜌 (𝑝′)

)
=

1
𝜌

𝜕𝑝

𝜕𝑥 𝑗
.
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Using the vector identity

(u · ∇) u = − u × 𝝎 + ∇
(
|u|2
2

)
, 𝝎 ≡ ∇ × u,

𝜕u
𝜕𝑡

+ ∇
[
|u|2
2

+
∫ 𝑝

𝑝𝑜

𝑑𝑝′

𝜌 (𝑝′) + 𝑔𝑧
]
= u × 𝝎 .

Steady Barotropic Inviscid Flow. If 𝜕/𝜕𝑡 = 0, then

∇𝐵 = u × 𝝎, 𝐵 ≡ |u|2
2

+
∫ 𝑝

𝑝𝑜

𝑑𝑝′

𝜌 (𝑝′) + 𝑔𝑧,

so constant-𝐵 surfaces contain both streamlines and vortex lines,
and along streamlines and vortex lines

|u|2
2

+
∫ 𝑝

𝑝𝑜

𝑑𝑝′

𝜌 (𝑝′) + 𝑔𝑧 = constant.

If the flow is also irrotational (𝝎 = 0), then 𝐵 is spatially uniform.

Unsteady Irrotational Barotropic Case. Let u = ∇𝜙 . Then,

𝜕𝜙

𝜕𝑡
+ 1

2
|∇𝜙 |2 +

∫ 𝑝

𝑝𝑜

𝑑𝑝′

𝜌 (𝑝′) + 𝑔𝑧 = constant.

Bernoulli From the Energy Equation. For steady, inviscid, adiabatic
flow with conservative body force and continuity used,

𝜌𝑢𝑖
𝜕

𝜕𝑥𝑖

(
𝑒 + |u|2

2

)
= 𝜌𝑢𝑖𝑔𝑖 −

𝜕

𝜕𝑥 𝑗
(𝜌𝑢 𝑗𝑝)/𝜌,

which reduces to the streamline form

ℎ + |u|2
2

+ 𝑔𝑧 = constant along streamlines, ℎ ≡ 𝑒 + 𝑝

𝜌
.

Viscous, Constant-𝜌 , Irrotational Case. Starting from the incom-
pressible NS equation and ∇· u = 0 and 𝝎 = 0,

𝜌
𝐷u
𝐷𝑡

= 𝜌g− ∇𝑝−𝜇 ∇(∇·u) ⇒ 𝜌
𝜕u
𝜕𝑡

+∇
(
𝜌 |u|2

2
+ 𝜌𝑔𝑧 + 𝑝

)
= 0,

which, integrated along a streamline between points 1 and 2, gives∫ 2

1

𝜕u
𝜕𝑡

· 𝑑s +
(
|u|2
2

+ 𝑔𝑧 + 𝑝

𝜌

)
2
=

(
|u|2
2

+ 𝑔𝑧 + 𝑝

𝜌

)
1
.

Equivalently, with u = ∇𝜙 ,

𝜕𝜙

𝜕𝑡
+ 1

2
|∇𝜙 |2 + 𝑔𝑧 + 𝑝

𝜌
= constant.

4.5.3 Neglect of Gravity in Constant-Density Flows. Let 𝑝𝑠 and 𝜌𝑠
denote hydrostatic pressure and density satisfying 0 = 𝜌𝑠g − ∇𝑝𝑠 .

𝜌
𝐷u
𝐷𝑡

= 𝜌 ′ g − ∇𝑝′ + 𝜇∇2u, 𝑝′ ≡ 𝑝 − 𝑝𝑠 , 𝜌 ′ ≡ 𝜌 − 𝜌𝑠 .

For constant-density flow (𝜌 ′ = 0),

𝜌
𝐷u
𝐷𝑡

= −∇𝑝′ + 𝜇∇2u.

4.5.4 The Boussinesq Approximation. For low-Mach flows with
small temperature-induced density variations and constant trans-
port properties, one approximates the continuity equation by in-
compressibility ∇· u = 0 and retains density variations only where
multiplied by gravity.

𝐷u
𝐷𝑡

=
𝜌 ′

𝜌0
g − 1

𝜌0
∇𝑝′ + 𝜈∇2u, 𝜈 ≡ 𝜇

𝜌0
, 𝜌 ′ ≈ −𝜌0𝛼 (𝑇 −𝑇0),

with thermal expansion coefficient 𝛼 and reference state (𝜌0,𝑇0).
For the energy balance,

𝜌
𝐷𝑒

𝐷𝑡
= −𝑝 (∇· u) + 𝜌 𝜀 − ∇· q,

and, using 𝑝 = 𝜌𝑅𝑇 , 𝑐𝑝 − 𝑐𝑣 = 𝑅, and 𝛼 = 1/𝑇 for a perfect gas,
the compressional heating term − 𝑝 ∇· u converts the left-hand side
to a 𝑐𝑝 -form. Neglecting viscous heating 𝜌𝜀 under Boussinesq scal-
ings and using Fourier’s law with constant 𝑘 gives the temperature
equation

𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
= −∇· q ⇒ 𝐷𝑇

𝐷𝑡
= 𝜅∇2𝑇, 𝜅 ≡ 𝑘

𝜌𝑐𝑝
.

Boussinesq Set. With g = −𝑔 e𝑧 and 𝜌 = 𝜌0 [1 − 𝛼 (𝑇 −𝑇0)],

∇· u = 0,
𝐷u
𝐷𝑡

= − 1
𝜌0

∇𝑝′ + 𝛼𝑔(𝑇 −𝑇0) e𝑧 + 𝜈∇2u,
𝐷𝑇

𝐷𝑡
= 𝜅∇2𝑇 .

5 Compressible Flow
Compressible flows exhibit several nonintuitive phenomena com-
pared with incompressible flows. Shock waves (near-discontinuities)
may appear. An increase (or decrease) in area may accelerate (or
decelerate) a uniform stream. Friction may increase a flow’s speed.
Heat addition may lower a flow’s temperature. The importance of
compressibility is characterized by the Mach number

𝑀 ≡ 𝑈

𝑐
,

where𝑈 is a representative speed and 𝑐 is the speed of sound, defined
thermodynamically by 𝑐2 ≡

(
𝜕𝑝

𝜕𝜌

)
𝑠
. Under isentropic conditions,

the nondimensionalized continuity equation can be written as

∇·u = −𝑀2
(
𝜌0

𝜌

)
𝐷

𝐷𝑡

(
𝑝 − 𝑝0

𝜌0𝑈 2

)
.

In engineering practice, flows with𝑀 < 0.3 are typically treated as
incompressible. It shows O(10%) deviations from perfectly incom-
pressible behavior when the remaining factors are order unity.

(1) Incompressible.𝑀 = 0. Density does not vary with pressure
in the flow field. A gas may be treated as constant-density.

(2) Subsonic. 0 < 𝑀 < 1. No shock waves appear.
(3) Transonic. 0.8 ≲ 𝑀 ≲ 1.2. Shock waves may appear. Analy-

sis is difficult due to inherent nonlinearity and strong invis-
cid/viscous coupling.

(4) Supersonic. 𝑀 > 1. Shock waves are generally present. In
some respects, analysis is easier since information propagates
along characteristics whose directions can be determined.

(5) Hypersonic.𝑀 ≳ 3. Very high speeds with friction or shocks
can raise temperatures enough for molecular dissociation and
other chemical effects.
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5.1 Acoustics
Acoustics treats small, isentropic fluctuations of velocity, pressure,
and density about steady reference values, providing the small–disturbance
limit of compressible flow.

5.1.1 Governing Equations with Acoustic Sources.

1
𝜌

𝐷𝜌

𝐷𝑡
+ 𝜕𝑢𝑖

𝜕𝑥𝑖
= 𝑞,

𝐷𝑢 𝑗

𝐷𝑡
+ 1
𝜌

𝜕𝑝

𝜕𝑥 𝑗
= 𝑔 𝑗 +

1
𝜌

𝜕𝜎𝑖 𝑗

𝜕𝑥𝑖
+ 𝑓𝑗 ,

where 𝑞(x, 𝑡) is a per-volume volume source, 𝑓𝑗 (x, 𝑡) is a per-mass
body-force source, and𝑔 𝑗 is the steady body force. In typical acoustic
propagation, viscous stresses are negligible unless the frequency is
very high or the propagation distance is very long.

5.1.2 Isentropic Thermodynamic Relation. For isentropic fluctua-
tions following a fluid particle,

𝐷𝑝

𝐷𝑡
=

(
𝜕𝑝

𝜕𝜌

)
𝑠

𝐷𝜌

𝐷𝑡
⇒ 𝐷𝑝

𝐷𝑡
= 𝑐2𝐷𝜌

𝐷𝑡
.

5.1.3 Convected Wave Equation and Source Types. Neglecting vis-
cosity for propagation and taking 𝑔 𝑗 uniform yields the convected
wave operator acting on 𝑝 with explicit acoustic sources.

𝐷

𝐷𝑡

(
1
𝜌𝑐2

𝐷𝑝

𝐷𝑡

)
− 𝜕

𝜕𝑥 𝑗

(
1
𝜌

𝜕𝑝

𝜕𝑥 𝑗

)
=
𝐷𝑞

𝐷𝑡
−

𝜕𝑓𝑗

𝜕𝑥 𝑗
+ 𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
.

The right-hand side represents, respectively, monopole (volume
injection/expansion), dipole (divergence of fluctuating body force),
and quadrupole (self-interaction of the flow) source terms. One may
group them as a single scalar source ¤𝑞.

¤𝑞 ≡ 𝐷𝑞

𝐷𝑡
−

𝜕𝑓𝑗

𝜕𝑥 𝑗
+ 𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
.

5.1.4 Linearization About a Uniform State. Decompose fields into
steady means and small fluctuations,

𝑢𝑖 =𝑈𝑖 + 𝑢′𝑖 , 𝑝 = 𝑝0 + 𝑝′, 𝜌 = 𝜌0 + 𝜌 ′, 𝑇 =𝑇0 +𝑇 ′,

and, for small isentropic variations,

𝑝′ = 𝑐2𝜌 ′,
𝑝′

𝑝0
=

𝑝′

𝜌0𝑐2 ≪ 1.

With𝑈𝑖 , 𝑝0, 𝜌0,𝑇0 uniform and time-invariant, the linearized, source-
free pressure field satisfies

1
𝑐2

(
𝜕

𝜕𝑡
+𝑈𝑖

𝜕

𝜕𝑥𝑖

)2
𝑝′ − 𝜕2𝑝′

𝜕𝑥𝑖 𝜕𝑥𝑖
= 0.

5.1.5 Classical Wave Equation and Velocity–Pressure Relation. For
a stationary medium (𝑈𝑖 = 0), the classical wave equation

1
𝑐2

𝜕2𝑝′

𝜕𝑡2 − 𝜕2𝑝′

𝜕𝑥𝑖 𝜕𝑥𝑖
= 0.

The linearized momentum equation relates acoustic velocity and
pressure.

𝜕𝑢′𝑗
𝜕𝑡

+ 1
𝜌0

𝜕𝑝′

𝜕𝑥 𝑗
= 0 ⇒ 𝑢′𝑗 (x, 𝑡) = − 1

𝜌0

∫
𝜕𝑝′

𝜕𝑥 𝑗
𝑑𝑡 .

5.1.6 One-Dimensional Solutions. For one-dimensional disturbances
𝑝′ (𝑥, 𝑡) in a quiescent fluid, the solution is the d’Alembert form

𝑝′ (𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡),
and the accompanying particle velocity along 𝑥 is

𝑢′ (𝑥, 𝑡) = 1
𝜌0𝑐

[
𝑓 (𝑥 − 𝑐𝑡) − 𝑔(𝑥 + 𝑐𝑡)

]
.

With a uniform mean flow𝑈 in the +𝑥 direction, the linear pressure
solution becomes

𝑝′ (𝑥, 𝑡) = 𝑓
(
𝑥 − (𝑐 +𝑈 )𝑡

)
+ 𝑔

(
𝑥 + (𝑐 −𝑈 )𝑡

)
,

so downstream-propagating waves convect at 𝑐 +𝑈 and upstream-
propagating waves at 𝑐 −𝑈 . When𝑈 > 𝑐 (supersonic), both travel
downstream, altering causal influence.

5.1.7 On Weakly and Finitely Nonlinear Waves. The sound speed
in an ideal gas depends on temperature, 𝑐 =

√︁
𝛾𝑅𝑇 . Because 𝛾 > 1,

compressions (𝑝′ > 0) locally increase𝑇 and 𝑐 , tending to steepen as
they propagate, while expansions (𝑝′ < 0) decrease𝑇 and 𝑐 , tending
to spread. At sufficiently large amplitudes, compression waves form
shocks and are no longer isentropic. They travel faster than linear
acoustic waves in a still fluid.

6 Vorticity Dynamics
The vorticity 𝝎 = ∇ × u is a vector field equal to twice the local
angular velocity of a fluid particle. A localized concentration of
nearly codirectional vorticity is called a vortex. Flows with circular
or nearly circular streamlines are termed vortex motions.
A vortex line is everywhere tangent to the local vorticity vector,
analogous to a streamline for the velocity field. If 𝝎 = (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧),
an element 𝑑s = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) of a vortex line satisfies

𝑑𝑥

𝜔𝑥
=
𝑑𝑦

𝜔𝑦
=
𝑑𝑧

𝜔𝑧
.

Vortex lines do not exist in irrotational regions, just as streamlines
do not exist in a fluid at rest. All vortex lines passing through a
closed curve form a vortex tube. Its strength is the circulation Γ
evaluated on any circuit that links the tube once. Using ∇ · 𝝎 = 0
and Gauss’ theorem over a volume𝑉 bounded by a section of a tube,∫

𝑉

∇ · 𝝎 𝑑𝑉 =

∫
𝜕𝑉

𝝎 · n𝑑𝐴 = Γupper − Γlower = 0,

so vortex tubes cannot begin or end within the fluid. They may end
on a boundary or form closed loops.
Solid-Body Rotation. In solid-body rotation 𝑆𝑖 𝑗 = 0, so the Newtonian
viscous stress reduces and Cauchy’s equation reduces to Euler’s
equation. With gravity −𝑔e𝑧 and𝑢𝑟 = 0,𝑢𝜃 = 1

2𝜔𝑟 , Euler’s equations

−𝜌
𝑢2
𝜃

𝑟
= − 𝜕𝑝

𝜕𝑟
, 0 = − 𝜕𝑝

𝜕𝑧
− 𝜌𝑔,

whose integrals are consistent with

𝑝 (𝑟, 𝑧) − 𝑝0 =
𝜌 𝜔2𝑟 2

8
− 𝜌𝑔𝑧.

Thus, constant-pressure surfaces are paraboloids of revolution. Be-
cause the flow is rotational, the Bernoulli function 𝐵 = 1

2𝑢
2
𝜃
+𝑔𝑧+𝑝/𝜌

is not constant from one streamline to another.
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Irrotational Line Vortex. For 𝑢𝜃 = Γ/(2𝜋𝑟 ), fluid elements deform
and the shear 𝜏𝑟𝜃 ≠ 0 . However, the net viscous force on a fluid
element vanishes for 𝑟 > 0, so Euler’s equations yield

𝑝 (𝑟, 𝑧) − 𝑝∞ = − 𝜌 Γ2

8𝜋2𝑟 2 − 𝜌𝑔𝑧,

so constant-pressure surfaces are two-sheeted hyperboloids. Here
the Bernoulli relation holds between any two points (steady, incom-
pressible, irrotational flow).
Rotating Cylinder (Rankine Vortex). A solid cylinder of radius 𝑎
rotating at constant angular rate Ω/2 in a viscous fluid produces
the steady field

𝑢𝜃 (𝑟 ) =


1
2 Ω 𝑟, 𝑟 ≤ 𝑎,
Ω𝑎2

2𝑟
, 𝑟 ≥ 𝑎,

which is the Rankine vortex with core size 𝑎 and circulation Γ =

𝜋𝑎2Ω. Viscous stresses and dissipation are present. The mechanical
work at the cylinder wall balances dissipation. The net viscous force
at a point is zero in the steady state. By angular momentum balance,
the applied torque is transmitted to arbitrarily large radii. In general,
viscosity is a primary agent for generating and diffusing vorticity.

6.1 Kelvin’s and Helmholtz’s Theorems
Helmholtz (1858) established several results on vortex motion in
inviscid fluids. A decade later, Kelvin introduced the circulation.
Kelvin’s Theorem. In an inviscid, barotropic flow subject to conser-
vative body forces, the circulation around a closed curve that moves
with the fluid remains constant in time when observed from a nonro-
tating/inertial frame. Equivalently,

𝐷Γ

𝐷𝑡
= 0,

where 𝐷/𝐷𝑡 is the material derivative taken following the fluid
elements that constitute the closed, material contour 𝐶 used to
define the circulation Γ.
Proof.

𝐷Γ

𝐷𝑡
=
𝐷

𝐷𝑡

∮
𝐶

𝑢𝑖 𝑑𝑥𝑖 =

∮
𝐶

𝐷𝑢𝑖

𝐷𝑡
𝑑𝑥𝑖 +

∮
𝐶

𝑢𝑖
𝐷

𝐷𝑡
(𝑑𝑥𝑖 ) .

Using the momentum equation in component form,
𝐷𝑢𝑖

𝐷𝑡
= − 1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝑔𝑖 +

1
𝜌

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
,∮

𝐶

𝐷𝑢𝑖

𝐷𝑡
𝑑𝑥𝑖 = −

∮
𝐶

1
𝜌
𝑑𝑝 −

∮
𝐶

𝑑Φ +
∮
𝐶

1
𝜌

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
𝑑𝑥𝑖 ,

where Φ is the body-force potential (𝑔𝑖 = −𝜕Φ/𝜕𝑥𝑖 ). For a barotropic
fluid, 𝜌 = 𝜌 (𝑝), and along a closed contour the first two integrals
vanish because 𝑝, 𝜌 , and Φ are single-valued.

𝑢 + 𝑑𝑢 =
𝐷

𝐷𝑡
(𝑥 + 𝑑𝑥) = 𝐷𝑥

𝐷𝑡
+ 𝐷

𝐷𝑡
(𝑑𝑥) ⇒ 𝑑𝑢𝑖 =

𝐷

𝐷𝑡
(𝑑𝑥𝑖 ),∮

𝐶

𝑢𝑖
𝐷

𝐷𝑡
(𝑑𝑥𝑖 ) =

∮
𝐶

𝑢𝑖 𝑑𝑢𝑖 =

∮
𝐶

𝑑
( 1

2𝑢𝑖𝑢𝑖
)
= 0,

again because 𝐶 is closed and 𝑢 is single-valued. So,
𝐷Γ

𝐷𝑡
=

∮
𝐶

1
𝜌

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
𝑑𝑥𝑖 .

Thus, Kelvin’s Theorem holds for inviscid flow (𝜇 = 0) or whenever
the integrated viscous term vanishes.
Implications for vorticity generation.

(1) Nonzero net viscous torques, typical near solid boundaries
under no-slip, where shear generates vorticity.

(2) Nonbarotropic effects (baroclinicity), where 𝜌 depends on
variables beyond 𝑝 (e.g., temperature or composition), pro-
ducing misaligned ∇𝑝 and ∇𝜌 and a net torque.

(3) Nonconservative body forces (e.g., Coriolis acceleration in a
rotating frame, often coupled with vortex stretching).

Restrictions for irrotational flow to remain irrotational.
(1) No net viscous forces act along𝐶 (e.g.,𝐶 does not enter bound-

ary layers).
(2) The flow is barotropic (e.g., isentropic, isothermal, or constant-

density homogeneous flow).
(3) Body forces are conservative, act through the particle center

of mass and produce no net torque.
(4) The reference frame is inertial, no extra apparent-force terms

from rotation/acceleration.
Helmholtz’s Vortex Theorems (under the same restrictions).

(1) Vortex lines move with the fluid.
(2) The strength/circulation of a vortex tube is constant along its

length.
(3) A vortex tube cannot end in the interior of the fluid. It must

terminate at a boundary or form a closed loop (vortex ring).
(4) The strength of a vortex tube remains constant in time.

6.2 Vorticity Equation in an Inertial Frame of Reference
We derive the vorticity equation for a barotropic fluid of constant
density 𝜌 and constant viscosity 𝜈 , in an inertial frame. Vorticity is

𝝎 ≡ ∇ × u, so that ∇ · 𝝎 = 0.

Taking the curl of the momentum equation

𝐷u
𝐷𝑡

= − 1
𝜌
∇𝑝 + g + 𝜈∇2u,

and for a conservative body force g = ∇Φ we have ∇ × ∇𝑝 = 0 and
∇ × g = 0, gives

∇ ×
(
𝜕u
𝜕𝑡

+ (u · ∇)u
)
= 𝜈 ∇ × ∇2u = 𝜈 ∇2 (∇ × u) = 𝜈 ∇2𝝎 .

Using the vector identity

∇ ×
[
(u · ∇)u

]
= (u · ∇)𝝎 − (𝝎 · ∇)u (with ∇ · u = 0),

we obtain
𝜕𝝎

𝜕𝑡
+ (u · ∇)𝝎 = (𝝎 · ∇)u + 𝜈 ∇2𝝎,

in material–derivative form,
𝐷𝝎

𝐷𝑡
= (𝝎 · ∇)u + 𝜈 ∇2𝝎 .

The diffusion term 𝜈∇2𝝎 represents viscous diffusion of vorticity,
while (𝝎 · ∇)u is the stretching/tilting of vortex lines. Pressure and
conservative body forces do not appear because they exert no net
torque on a fluid element. They act through its center of mass.
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6.3 Velocity Induced by a Vortex Filament. Law of
Biot–Savart

For a variety of applications in aero- and hydrodynamics, one often
needs the flow induced by a concentrated distribution of vorticity (a
vortex) of arbitrary orientation. Consider incompressible flow with
∇·u = 0. Taking the curl of the vorticity gives

∇ × 𝝎 = ∇ × (∇ × u) = ∇(∇·u) − ∇2u = −∇2u,

so u satisfies a vector Poisson equation whose solution (the vorticity-
induced part of the velocity) is

u(x, 𝑡) = − 1
4𝜋

∫
𝑉 ′

1
|x − x′ |

(
∇′ × 𝝎 (x′, 𝑡)

)
𝑑3x′

= − 1
4𝜋

∫
𝑉 ′

∇′ ×
(
𝝎 (x′, 𝑡)
|x − x′ |

)
𝑑3x′ + 1

4𝜋

∫
𝑉 ′

𝝎 (x′, 𝑡) × x − x′

|x − x′ |3 𝑑
3x′,

where 𝑉 ′ encloses the vorticity of interest and ∇′ acts on x′. If 𝑉 ′

is chosen to capture a local segment of the vortex with end faces
normal to 𝝎 and lateral surface outside the vorticity support,

u(x, 𝑡) = 1
4𝜋

∫
𝑉 ′

𝝎 (x′, 𝑡) × x − x′

|x − x′ |3 𝑑
3x′ .

For a slender vortex element of length 𝑑𝑙 and cross-sectional area
Δ𝐴′, and for observation points sufficiently far that (x−x′)/|x−x′ |3
is effectively uniform over the cross-section,

𝑑u(x, 𝑡) ≈ Γ 𝑑𝑙

4𝜋
𝝎̂ × x − x′

|x − x′ |3 ,

where Γ =
∫
Δ𝐴′ 𝝎 · 𝝎̂ 𝑑𝐴′ is the vortex strength (circulation) and 𝝎̂ is

the unit vector along the local vorticity direction. Integrating along
a slender filament gives the Biot–Savart law for vortex-induced
velocity.

u(x, 𝑡) = Γ

4𝜋

∫
vortex

𝝎̂ (x′) × x − x′

|x − x′ |3 𝑑𝑙

6.4 Vorticity Equation in a Rotating Frame of Reference
The vorticity equation derived in an inertial frame for a uniform–
density, uniform–viscosity fluid can be generalized to a steadily
rotating frame and to variable density while retaining incompress-
ible flow. This form is relevant to rotating machinery as well as
large–scale oceanic and atmospheric motions where Earth’s rota-
tion must be included when conserving momentum.
For an incompressible, variable–density flow observed in a frame
rotating with constant angular velocity 𝛀, the continuity and mo-
mentum equations are

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
+ 2𝜀𝑖 𝑗𝑘 Ω 𝑗𝑢𝑘 = − 1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝑔𝑖 + 𝜈

𝜕2𝑢𝑖

𝜕𝑥 𝑗 𝜕𝑥 𝑗
,

where g is the effective gravity, including centrifugal effects. The
advective and viscous terms can be rewritten to

𝑢 𝑗
𝜕𝑢𝑖

𝜕𝑥 𝑗
= − 𝜀𝑖 𝑗𝑘 𝑢 𝑗𝜔𝑘 +

𝜕

𝜕𝑥𝑖

( 1
2𝑢 𝑗𝑢 𝑗

)
,

𝜈
𝜕2𝑢𝑖

𝜕𝑥 𝑗 𝜕𝑥 𝑗
= −𝜈 𝜀𝑖 𝑗𝑘

𝜕𝜔𝑘

𝜕𝑥 𝑗
,

and the Coriolis term may be written as

2𝜀𝑖 𝑗𝑘 Ω 𝑗𝑢𝑘 = − 2 𝜀𝑖 𝑗𝑘 𝑢 𝑗Ω𝑘 .

The momentum equation becomes

𝜕𝑢𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

( 1
2𝑢 𝑗𝑢 𝑗 + Φ

)
− 𝜀𝑖 𝑗𝑘 𝑢 𝑗 (𝜔𝑘 + 2Ω𝑘 ) = − 1

𝜌

𝜕𝑝

𝜕𝑥𝑖
− 𝜈 𝜀𝑖 𝑗𝑘

𝜕𝜔𝑘

𝜕𝑥 𝑗
.

Taking the Curl, apply 𝜀𝑛𝑞𝑖 𝜕/𝜕𝑥𝑞 ,

𝜕𝜔𝑛

𝜕𝑡
=
𝜕𝑢𝑛

𝜕𝑥 𝑗

(
𝜔 𝑗 + 2Ω 𝑗

)
− 𝑢 𝑗

𝜕𝜔𝑛

𝜕𝑥 𝑗
+ 1
𝜌2 𝜀𝑛𝑞𝑖

𝜕𝜌

𝜕𝑥𝑞

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈 𝜕2𝜔𝑛

𝜕𝑥 𝑗 𝜕𝑥 𝑗
.

In vector form,

𝐷𝝎

𝐷𝑡
=

(
𝝎 + 2𝛀

)
·∇ u + 1

𝜌2 ∇𝜌 × ∇𝑝 + 𝜈 ∇2𝝎

which is the variable–density, incompressible vorticity equation in a
frame rotating with constant 𝛀. Here u is the velocity and𝝎 = ∇×u
is the vorticity measured in the rotating frame. The quantity 2𝛀 is
the planetary vorticity, and 𝝎𝑎 = 𝝎 + 2𝛀 is the absolute vorticity.
The three right–hand–side terms represent (i) vortex stretching/tilting,
(ii) baroclinic generation of vorticity (vanishes for barotropic flows
with 𝜌 = 𝜌 (𝑝) s.t. ∇𝜌 ∥ ∇𝑝), and (iii) viscous diffusion of vorticity.
Introduce the natural orthonormal triad (e𝑠 , e𝑛, e𝑚) aligned with
the local vorticity direction e𝑠 , arc length 𝑠 along a vortex line. Then,(

𝝎 · ∇
)
𝒖 =

(
𝝎 · e𝑠 𝜕/𝜕𝑠

)
𝒖 = 𝜔

𝜕𝒖

𝜕𝑠
,

so that the 𝑠–component governs stretching of vortex lines, whereas
the 𝑛– and𝑚–components describe tilting.

𝐷𝜔𝑠

𝐷𝑡
= 𝜔

𝜕𝑢𝑠

𝜕𝑠
,

𝐷𝜔𝑛

𝐷𝑡
= 𝜔

𝜕𝑢𝑛

𝜕𝑠
,

𝐷𝜔𝑚

𝐷𝑡
= 𝜔

𝜕𝑢𝑚

𝜕𝑠
.

In strictly two–dimensional flows, (𝝎 · ∇)𝒖 = 0.
If 𝛀 = Ω e𝑧 and we isolate the rotation–induced production, then

𝐷𝜔𝑧

𝐷𝑡
= 2Ω

𝜕𝑤

𝜕𝑧
,

𝐷𝜔𝑥

𝐷𝑡
= 2Ω

𝜕𝑢

𝜕𝑧
,

𝐷𝜔𝑦

𝐷𝑡
= 2Ω

𝜕𝑣

𝜕𝑧
,

showing that vertical stretching of fluid columns tends to create
vertical relative vorticity.
Kelvin’s Theorem with Planetary Vorticity. Inviscid circulation fol-
lowing a material loop in a rotating frame is conserved for the
absolute vorticity.

𝐷Γ𝑎
𝐷𝑡

= 0, Γ𝑎 ≡
∬
𝐴

(𝝎 + 2𝛀) · n𝑑𝐴 = Γ + 2
∬
𝐴

𝛀 · n𝑑𝐴.

7 Ideal Flow
When a constant-density fluid flows without rotation and pressure
is measured relative to the local hydrostatic value, the equations of
motion in an inertial frame becomes

∇·u = 0, 𝜌
𝐷u
𝐷𝑡

= −∇𝑝.

These are the equations of ideal flow. Here, the characteristic size
𝐿 and speed 𝑈 are such that the Reynolds number Re = 𝜌𝑈𝐿/𝜇 is
large, typically Re ≳ 103, confining the influence of viscosity and
fluid-element rotation to thin surface boundary layers.
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7.1 Two-Dimensional Stream Function and Velocity
Potential

The two-dimensional incompressible continuity equation
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0

is identically satisfied when the (𝑢, 𝑣) velocity components are de-
termined from a single scalar function𝜓 .

𝑢 ≡ 𝜕𝜓

𝜕𝑦
, 𝑣 ≡ − 𝜕𝜓

𝜕𝑥
.

The function𝜓 (𝑥,𝑦) is the stream function in two dimensions. Along
a curve of constant𝜓 , 𝑑𝜓 = 0, which implies

0 = 𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 + 𝜕𝜓

𝜕𝑦
𝑑𝑦 = − 𝑣 𝑑𝑥 + 𝑢 𝑑𝑦, ⇒ 𝑑𝑦

𝑑𝑥

����
𝜓=const

=
𝑣

𝑢
,

which is the definition of a streamline in two dimensions. The vor-
ticity 𝜔𝑧 in a flow described by𝜓 is

𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
= 𝜔𝑧 =

𝜕

𝜕𝑥

(
− 𝜕𝜓
𝜕𝑥

)
− 𝜕

𝜕𝑦

(
𝜕𝜓

𝜕𝑦

)
= −∇2𝜓 .

In constant-density irrotational flow, 𝜔𝑧 is zero everywhere except
at the locations of ideal irrotational vortices. Thus we are interested
in solutions of

∇2𝜓 = 0, ∇2𝜓 = − Γ 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑦 − 𝑦0),

where 𝛿 is the Dirac delta function and 𝑥0 = (𝑥0, 𝑦0) is the location of
an ideal irrotational vortex of strength Γ. In an unbounded domain,
the most elementary nontrivial solutions are

𝜓 = −𝑉 𝑥 +𝑈 𝑦, 𝜓 = − Γ

2𝜋
ln

√︁
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2,

corresponding, respectively, to uniform velocity with horizontal
component 𝑈 and vertical component 𝑉 , and to the flow induced
by an irrotational vortex located at 𝑥0.
An equivalent formulation of two-dimensional ideal flow results
when irrotationality is enforced first.

𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
= 0,

and it is identically satisfied when 𝑢, 𝑣 are obtained from a single
scalar function 𝜙 :

𝑢 ≡ 𝜕𝜙

𝜕𝑥
, 𝑣 ≡ 𝜕𝜙

𝜕𝑦
.

The function 𝜙 (𝑥,𝑦) is the velocity potential in two dimensions
because it implies ∇𝜙 = u. Curves of 𝜙 = const satisfy

0 = 𝑑𝜙 =
𝜕𝜙

𝜕𝑥
𝑑𝑥 + 𝜕𝜙

𝜕𝑦
𝑑𝑦 = 𝑢 𝑑𝑥 + 𝑣 𝑑𝑦, ⇒ 𝑑𝑦

𝑑𝑥

����
𝜙=const

= − 𝑢
𝑣
,

and are perpendicular to streamlines. Using 𝜙 (𝑥,𝑦), the condition
for incompressibility becomes

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
=

𝜕

𝜕𝑥

(
𝜕𝜙

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝜕𝜙

𝜕𝑦

)
= ∇2𝜙 = 𝑞(𝑥,𝑦),

where 𝑞(𝑥,𝑦) is the spatial distribution of source strength in the
flow field. In real incompressible flows, 𝑞 ≡ 0. However, ideal point

sources and sinks are useful idealizations. They are the 𝜙-field coun-
terparts of positive- and negative-circulation ideal vortices in 𝜓 -
fields. Thus we are interested in solutions of

∇2𝜙 = 0, ∇2𝜙 = 𝑞𝑠 𝛿 (𝑥 − 𝑥0) 𝛿 (𝑦 − 𝑦0),

where 𝑞𝑠 (units of length2/time) sets the strength of the singularity
at 𝑥0. In an unbounded domain, the most elementary solutions are

𝜙 =𝑈 𝑥 +𝑉 𝑦, 𝜙 =
𝑞𝑠

2𝜋
ln

√︁
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2,

corresponding, respectively, to uniformflowwith components (𝑈 ,𝑉 )
and to the flow induced by an ideal point source of strength 𝑞𝑠 lo-
cated at 𝑥0. Here 𝑞𝑠 is the source’s volume flow rate per unit length
perpendicular to the plane of the flow.
Conservation of mass requires the normal component of fluid ve-
locity to equal the boundary’s normal velocity, n ·U𝑠 = n ·u on
the surface, where n is the outward normal and U𝑠 is the surface
velocity. For a stationary body this reduces to

𝜕𝜙

𝜕𝑛

����
surface

= 0 or
𝜕𝜓

𝜕𝑠

����
surface

= 0,

where 𝑠 is arc length along the surface and 𝑛 the surface-normal
coordinate. Because 𝜕𝜓/𝜕𝑠 = 0 along a streamline, a stationary solid
boundary in an ideal flow is itself a streamline. Hence, replacing any
ideal-flow streamline by a stationary solid boundary of the same
shape leaves the rest of the flow unchanged.
The pressure is then obtained from conservation of momentum via
a Bernoulli equation.

𝑝+1
2
𝜌 |u|2 = 𝑝+1

2
𝜌 (𝑢2+𝑣2) = 𝑝+1

2
𝜌 |∇𝜙 |2 = 𝑝+1

2
𝜌 |∇𝜓 |2 = const.

Planar polar coordinates.

1
𝑟

𝜕

𝜕𝑟
(𝑟 𝑢𝑟 ) +

1
𝑟

𝜕𝑢𝜃

𝜕𝜃
= 0 (continuity),

1
𝑟

𝜕

𝜕𝑟
(𝑟 𝑢𝜃 ) −

1
𝑟

𝜕𝑢𝑟

𝜕𝜃
= 0 (irrotationality),

and

𝑢𝑟 =
𝜕𝜙

𝜕𝑟
=

1
𝑟

𝜕𝜓

𝜕𝜃
, 𝑢𝜃 =

1
𝑟

𝜕𝜙

𝜕𝜃
= − 𝜕𝜓

𝜕𝑟
.

7.2 Construction of Elementary Flows in Two Dimensions
Quadratic functions of elementary flows in 𝑥 and 𝑦 are

𝜓 = 2𝐴𝑥𝑦 or 𝜙 = 2𝐴𝑥𝑦,

𝜓 = 𝐴 (𝑥2 − 𝑦2) or 𝜙 = 𝐴 (𝑥2 − 𝑦2),

where 𝐴 is a constant. Curves of

𝜓 = − Γ

2𝜋
ln

√︁
𝑥2 + 𝑦2 = const

are circles centered at the origin.

𝑢 = − Γ

2𝜋
𝑦

𝑥2 + 𝑦2 = − Γ

2𝜋𝑟
sin𝜃, 𝑣 =

Γ

2𝜋
𝑥

𝑥2 + 𝑦2 =
Γ

2𝜋𝑟
cos𝜃 .

Equivalently, 𝑢𝑟 = 0 and 𝑢𝜃 = Γ/(2𝜋𝑟 ), i.e. the ideal irrotational
vortex. Similarly, curves of

𝜙 =
𝑞𝑠

2𝜋
ln

√︁
𝑥2 + 𝑦2 = const
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are circles centered on the origin.

𝑢 =
𝑞𝑠

2𝜋
𝑥

𝑥2 + 𝑦2 =
𝑞𝑠

2𝜋𝑟
cos𝜃, 𝑣 =

𝑞𝑠

2𝜋
𝑦

𝑥2 + 𝑦2 =
𝑞𝑠

2𝜋𝑟
sin𝜃 .

Equivalently, 𝑢𝑟 = 𝑞𝑠/(2𝜋𝑟 ) and 𝑢𝜃 = 0, which is radial flow away
from the origin. Here, ∇·u is zero everywhere except at 𝑟 = 0. Thus,
this potential represents flow from an ideal incompressible point
source (𝑞𝑠 > 0) or sink (𝑞𝑠 < 0) located at 𝑟 = 0 in two dimensions.
A source of strength +𝑞𝑠 at (−𝜀, 0) and a sink of strength −𝑞𝑠 at

(+𝜀, 0) can be combined to obtain the potential for a doublet in the
limit 𝜀 → 0 and 𝑞𝑠 → ∞ such that the dipole strength vector

d =
∑︁

sources
x𝑖𝑞𝑠,𝑖 = −𝜀 e𝑥 𝑞𝑠 + 𝜀 e𝑥 (−𝑞𝑠 ) = −2𝑞𝑠𝜀 e𝑥

remains constant (pointing from sink toward source). Using 𝑟 2 =

𝑥2 + 𝑦2 and expanding the logarithms,

𝜙 −→ 𝑞𝑠𝜀

𝜋

𝑥

𝑟 2 = − d · x
2𝜋𝑟 2 =

∥d∥
2𝜋

cos𝜃
𝑟

.

Source + uniform stream (half-body).

𝜙 =𝑈𝑥 + 𝑞𝑠

2𝜋
ln

√︁
𝑥2 + 𝑦2 =𝑈𝑟 cos𝜃 + 𝑞𝑠

2𝜋
ln 𝑟,

𝜓 =𝑈𝑦 + 𝑞𝑠

2𝜋
tan−1

(𝑦
𝑥

)
=𝑈𝑟 sin𝜃 + 𝑞𝑠

2𝜋
𝜃 .

𝑢 =𝑈 + 𝑞𝑠

2𝜋
𝑥

𝑥2 + 𝑦2 , 𝑣 =
𝑞𝑠

2𝜋
𝑦

𝑥2 + 𝑦2 .

The stagnation point is at 𝑥 = 𝑎 = 𝑞𝑠/(2𝜋𝑈 ), 𝑦 = 0, and the stag-
nation streamline has𝜓 = 𝑞𝑠/2. The stagnation streamlines form a
semi-infinite half-body. The half-width ℎ of the body is

ℎ =
𝑞𝑠

2𝜋𝑈
(𝜋 − 𝜃 ), ℎmax −−−→

𝜃→0

𝑞𝑠

2𝑈
.

The pressure coefficient on the surface is

𝐶𝑝 ≡ 𝑝 − 𝑝∞
1
2𝜌𝑈

2
= 1 − ∥u∥2

𝑈 2 .

Uniform stream + doublet (circular cylinder without circulation).
Superpose a horizontal free stream 𝑈 with a doublet of strength
d = 2𝜋𝑈𝑎2 e𝑥 .

𝜙 =𝑈𝑥 +𝑈𝑎2 𝑥

𝑥2 + 𝑦2 =𝑈

(
𝑟 + 𝑎2

𝑟

)
cos𝜃,

𝜓 =𝑈𝑦 −𝑈𝑎2 𝑦

𝑥2 + 𝑦2 =𝑈

(
𝑟 − 𝑎2

𝑟

)
sin𝜃 .

The streamline 𝜓 = 0 corresponds to 𝑟 = 𝑎 for all 𝜃 , i.e. a circular
cylinder of radius 𝑎. The velocity field is

𝑢𝑟 =𝑈

(
1 − 𝑎2

𝑟 2

)
cos𝜃, 𝑢𝜃 = −𝑈

(
1 + 𝑎2

𝑟 2

)
sin𝜃 .

On 𝑟 = 𝑎, 𝑢𝑟 = 0 and 𝑢𝜃 = −2𝑈 sin𝜃 , so the cylinder-surface
pressure coefficient is

𝐶𝑝 (𝑟 = 𝑎, 𝜃 ) = 1 − 4 sin2 𝜃 .

There are stagnation points at (𝑟, 𝜃 ) = (𝑎, 0) and (𝑎, 𝜋). The fore–aft
symmetry of𝐶𝑝 implies no net pressure drag (d’Alembert’s paradox).

Adding circulation (lift on a cylinder). Add a point vortex of circu-
lation −Γ at the origin.

𝜓 =𝑈

(
𝑟 − 𝑎2

𝑟

)
sin𝜃 + Γ

2𝜋
ln

( 𝑟
𝑎

)
.

The tangential velocity in the field is 𝑢𝜃 = −𝑈 (1 + 𝑎2/𝑟 2) sin𝜃 −
Γ/(2𝜋𝑟 ), so at the surface,

𝑢𝜃 (𝑟 = 𝑎, 𝜃 ) = − 2𝑈 sin𝜃 − Γ

2𝜋𝑎
.

Stagnation points on the surface satisfy

sin𝜃 = − Γ

4𝜋𝑎𝑈
.

For Γ < 4𝜋𝑎𝑈 , there are two surface stagnation points that move
with increasing Γ and coalesce at Γ = 4𝜋𝑎𝑈 . For larger Γ, a stagna-
tion point appears off the surface along the negative 𝑦-axis at

𝑟 =
1

4𝜋𝑈

(
Γ ±

√︁
Γ2 − (4𝜋𝑎𝑈 )2

)
,

with the physically relevant root 𝑟 > 𝑎. The surface pressure from
Bernoulli with 𝑝∞ + 1

2𝜌𝑈
2 as the constant is

𝑝 (𝑟 = 𝑎, 𝜃 ) = 𝑝∞ + 1
2
𝜌

[
𝑈 2 −

(
2𝑈 sin𝜃 + Γ

2𝜋𝑎

)2
]
.

The vertical force per unit span (lift) obtained by integrating pres-
sure around the surface is

𝐿 = 𝜌𝑈 Γ,

the Kutta–Zhukhovsky lift theorem.

Method of images (walls). Superposition also allows boundaries
to be built in via images. If the unbounded-domain solution satisfies
∇2𝜓1 = −𝜔1 (𝑥,𝑦), then

∇2𝜓2 = −𝜔1 (𝑥,𝑦) + 𝜔1 (𝑥,−𝑦)
yields the solution for the same vorticity distribution with a solid
wall along the 𝑥-axis, with

𝜓2 =𝜓1 (𝑥,𝑦) −𝜓1 (𝑥,−𝑦),
so that the zero streamline𝜓2 = 0 lies on 𝑦 = 0. Similarly, if ∇2𝜙1 =

𝑞1 (𝑥,𝑦) in an unbounded domain, then

∇2𝜙2 = 𝑞1 (𝑥,𝑦) + 𝑞1 (𝑥,−𝑦), 𝜙2 = 𝜙1 (𝑥,𝑦) + 𝜙1 (𝑥,−𝑦),
enforces 𝑣 = 𝜕𝜙2/𝜕𝑦 = 0 on 𝑦 = 0.

7.3 Complex Potential
Using complex variables, the velocity potential 𝜙 and stream func-
tion𝜓 introduced in the previous sections can be combined into a
single complex function𝑤 (𝑧), called the complex potential.

𝑤 (𝑧) = 𝜙 (𝑥,𝑦) + 𝑖 𝜓 (𝑥,𝑦), 𝑧 ≡ 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃 .

The complex function 𝑤 (𝑧) is assumed to be analytic, so that
its derivative d𝑤/d𝑧 exists and has the same value regardless of
the direction of approach in the complex 𝑧-plane. This analyticity
requirement leads to the Cauchy–Riemann equations.

𝜕𝜙

𝜕𝑥
=
𝜕𝜓

𝜕𝑦
,

𝜕𝜙

𝜕𝑦
= − 𝜕𝜓

𝜕𝑥
.
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If 𝜙 is interpreted as the velocity potential and 𝜓 as the stream
function, then𝑤 is the complex potential of the flow. In this setting,
the complex velocity is given by

d𝑤
d𝑧

= 𝑢 − 𝑖𝑣 .

Consider first the complex potential corresponding to flow near a
corner. For a corner of angle 𝛼 = 𝜋/𝑛, a suitable complex potential

𝑤 (𝑧) = 𝐴𝑧𝑛 = 𝐴
(
𝑟𝑒𝑖𝜃

)𝑛
= 𝐴𝑟𝑛

(
cos𝑛𝜃 + 𝑖 sin𝑛𝜃

)
, 𝑛 ≥ 1

2 ,

where 𝐴 is a real constant. For 𝑛 = 2, the streamlines𝜓 = ℑ{𝑤} =
𝐴𝑟 2 sin2 𝜃 describe flow in a region bounded by two perpendicular
walls. Extending the field into the second quadrant of the 𝑧-plane
shows that 𝑛 = 2 also represents flow impinging on a flat wall. The
streamlines and equipotential lines are rectangular hyperbolas, and
the flow includes a stagnation point, so this configuration is called
a stagnation flow. For 𝑛 = 1/2, the streamline pattern corresponds
instead to flow past a semi-infinite plate.

d𝑤
d𝑧

= 𝑛𝐴𝑧 𝑛−1 =
𝐴𝜋

𝛼
𝑧 (𝜋−𝛼 )/𝛼 ,

so that d𝑤/d𝑧 = 0 at 𝑧 = 0 for 𝛼 < 𝜋 , whereas d𝑤/d𝑧 → ∞ at 𝑧 = 0
when 𝛼 > 𝜋 . Thus, the origin is a stagnation point if the corner
angle is less than 180◦, and a point of unbounded velocity if the
angle exceeds 180◦. In either case it is a singular point of the flow.
The complex potential for an irrotational vortex of circulation

(strength) Γ located at (𝑥0, 𝑦0) is

𝑤 (𝑧) = − 𝑖Γ

2𝜋
ln

(
𝑧 − 𝑧0

)
=

Γ

2𝜋
𝜃0 − 𝑖

Γ

2𝜋
ln 𝑟0,

where 𝑧0 = 𝑥0 + 𝑖𝑦0 is the complex coordinate of the vortex center,

𝑟0 =
√︁
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2, 𝜃0 = tan−1

(
𝑦 − 𝑦0

𝑥 − 𝑥0

)
.

The complex potential for a source or sink of volumetric flow
rate per unit depth 𝑞𝑠 , located at (𝑥0, 𝑦0) is

𝑤 (𝑧) = 𝑞𝑠

2𝜋
ln

(
𝑧 − 𝑧0

)
=
𝑞𝑠

2𝜋
ln 𝑟0 + 𝑖

𝑞𝑠

2𝜋
𝜃0 .

The complex potential for a two-dimensional doublet (dipole)
with strength 𝑑 aligned with the 𝑥-axis and located at (𝑥0, 𝑦0) is

𝑤 (𝑧) = 𝑑

2𝜋 (𝑧 − 𝑧0)
.

7.4 Forces on a Two-Dimensional Body
Blasius Theorem. Consider a stationary object of this type with

extent 𝐵 perpendicular to the plane of the flow, and let 𝐷 (drag) be
the streamwise (𝑥 ) force component and 𝐿 (lift) be the cross-stream
or lateral (𝑦) force (per unit depth) exerted on the object by the
surrounding fluid. Thus, from Newton’s third law, the total force
applied to the fluid by the object is

𝑭 = 𝐵
(
𝐷 𝒆𝑥 + 𝐿 𝒆𝑦

)
.

For steady, irrotational, constant-density flow, conservation of mo-
mentum within a stationary control volume implies∫

𝐴∗
𝜌 𝒖 (𝒖 · 𝒏) 𝑑𝐴 = −

∫
𝐴∗
𝑝 𝒏𝑑𝐴 + 𝑭 .

If the control surface 𝐴∗ is chosen to coincide with the body surface
and the body is not moving, then 𝒖 · 𝒏 = 0, so

𝐷 𝒆𝑥 + 𝐿 𝒆𝑦 = − 1
𝐵

∫
𝐴∗
𝑝 𝒏𝑑𝐴.

If 𝐶 is the contour of the body’s cross section, then 𝑑𝐴 = 𝐵 𝑑𝑠

where 𝑑𝑠 = 𝒆𝑥 𝑑𝑥 + 𝒆𝑦 𝑑𝑦 is an elemental vector along 𝐶 and |𝑑𝑠 | =[
(𝑑𝑥)2 + (𝑑𝑦)2]1/2.

𝒏 =
𝒆𝑥 𝑑𝑦 − 𝒆𝑦 𝑑𝑥

|𝑑𝑠 | .

𝐷 𝒆𝑥 + 𝐿 𝒆𝑦 = − 1
𝐵

∮
𝐶

𝑝
(
𝒆𝑥 𝑑𝑦 − 𝒆𝑦 𝑑𝑥

) 𝐵 |𝑑𝑠 |
|𝑑𝑠 |

= −
∮
𝐶

𝑝 𝑑𝑦 𝒆𝑥 +
∮
𝐶

𝑝 𝑑𝑥 𝒆𝑦 .

𝐷 − 𝑖𝐿 = −
∮
𝐶

𝑝 𝑑𝑦 − 𝑖
∮
𝐶

𝑝 𝑑𝑥 = −𝑖
∮
𝐶

𝑝 (𝑑𝑥 − 𝑖 𝑑𝑦) = −𝑖
∮
𝐶

𝑝 𝑑𝑧∗,

The pressure is found from the Bernoulli equation,

𝑝∞ + 1
2
𝜌𝑈 2 = 𝑝 + 1

2
𝜌
(
𝑢2 + 𝑣2) = 𝑝 + 1

2
𝜌 (𝑢 − 𝑖𝑣) (𝑢 + 𝑖𝑣),

where 𝑝∞ and𝑈 are the pressure and horizontal flow speed far from
the body.

𝐷 − 𝑖𝐿 = −𝑖
∮
𝐶

[
𝑝∞ + 1

2
𝜌𝑈 2 − 1

2
𝜌 (𝑢 − 𝑖𝑣) (𝑢 + 𝑖𝑣)

]
𝑑𝑧∗ .

The integral of the constant terms 𝑝∞ + 1
2𝜌𝑈

2 around a closed
contour is zero. On the body surface, the velocity vector and the
surface element 𝑑𝑧 = |𝑑𝑧 |e𝑖𝛼 are parallel, so

(𝑢 + 𝑖𝑣) 𝑑𝑧∗ = (𝑢 − 𝑖𝑣) 𝑑𝑧 = 𝑑𝑤

𝑑𝑧
𝑑𝑧,

𝐷 − 𝑖𝐿 = 𝑖
𝜌

2

∮
𝐶

(
𝑑𝑤

𝑑𝑧

)2
𝑑𝑧,

It applies to any steady planar ideal flow.

Kutta–Zhukhovsky Lift Theorem. The Blasius theorem can be
readily applied to an arbitrary cross-section object around which
there is circulation Γ. The flow can be considered as a superposi-
tion of a uniform stream and a set of singularities such as vortices,
doublets, sources, and sinks.
As there are no singularities outside the body, we shall take the

contour 𝐶 in the Blasius theorem at a very large distance from the
body. From large distances, all singularities appear to be located
near the origin 𝑧 = 0, so the complex potential on the contour 𝐶
will be of the form

𝑤 (𝑧) =𝑈𝑧 + 𝑞𝑠

2𝜋
ln 𝑧 + 𝑖 Γ

2𝜋
ln 𝑧 + 𝑑

2𝜋𝑧
+ · · · ,

where𝑈 , 𝑞𝑠 , Γ, and 𝑑 are positive and real. The first term represents
a uniform flow in the 𝑥-direction, the second term represents a net
source of fluid, the third term represents a clockwise vortex, and
the fourth term represents a doublet. Because the body contour is
closed, there can be no net flux of fluid into the domain. Sp, 𝑞𝑠 = 0.
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The Blasius theorem then becomes

𝐷 − 𝑖𝐿 = 𝑖
𝜌

2

∮
𝐶

(
𝑈 + 𝑖Γ

2𝜋𝑧
− 𝑑

2𝜋𝑧2 + · · ·
)2
𝑑𝑧

= 𝑖
𝜌

2

∮
𝐶

[
𝑈 2 + 𝑖𝑈 Γ

𝜋

1
𝑧
+

(
𝑈𝑑

𝜋
− Γ2

4𝜋2

)
1
𝑧2 + · · ·

]
𝑑𝑧.

𝐷 − 𝑖𝐿 = 𝑖
𝜌

2
2𝜋𝑖

(
𝑖𝑈 Γ

𝜋

)
= − 𝑖 𝜌𝑈 Γ,

or
𝐷 = 0, 𝐿 = 𝜌𝑈 Γ.

Thus, there is no drag on an arbitrary-cross-section object in steady
two-dimensional, irrotational, constant-density flow, a more general
statement of d’Alembert’s paradox.

8 Gravity Waves
There are three types of waves commonly considered in the study of
fluid mechanics: interface waves, internal waves, and compression
and expansion waves. For interface waves, the restoring forces are
gravity and surface tension. For internal waves, the restoring force
is gravity. For expansion and compression waves, the restoring force
comes directly from the compressibility of the fluid. Perhaps the
simplest and most readily observed fluid waves are those that form
and travel on the density discontinuity provided by an air–water
interface. Such surface capillary–gravity waves, sometimes simply
called water waves, involve fluid particle motions parallel and per-
pendicular to the direction of wave propagation. Thus, the waves
are neither longitudinal nor transverse. Wave amplitudes are as-
sumed small enough so that the governing equations and boundary
conditions are linear. For such linear waves, Fourier superposition of
sinusoidal waves allows arbitrary waveforms to be constructed and
sinusoidal waveforms arise naturally from the linearized equations
for water waves. Consequently, a simple sinusoidal traveling wave
of the form

𝜂 (𝑥, 𝑡) = 𝑎 cos
[

2𝜋
𝜆

(𝑥 − 𝑐𝑡)
]

is a foundational element for what follows. In Cartesian coordinates
with 𝑥 horizontal and 𝑧 vertical, 𝑧 = 𝜂 (𝑥, 𝑡) specifies the waveform
or surface shape where 𝑎 is the wave amplitude, 𝜆 is the wavelength,
𝑐 is the phase speed, and 2𝜋 (𝑥 − 𝑐𝑡)/𝜆 is the phase. In addition,
the spatial frequency 𝑘 ≡ 2𝜋/𝜆, with units of rad/m, is known
as the wave number. If it describes the vertical deflection of an
air–water interface, then the height of wave crests is +𝑎 and the
depth of the wave troughs is −𝑎 compared to the undisturbed water-
surface location 𝑧 = 0. At any instant in time, the distance between
successive wave crests is 𝜆. At any fixed 𝑥-location, the time between
passage of successive wave crests is the period, 𝑇 = 2𝜋/(𝑘𝑐) = 𝜆/𝑐 .
Thus, the wave’s cyclic frequency is 𝜈 = 1/𝑇 with units of Hz, and
its radian frequency is 𝜔 = 2𝜋𝜈 with units of rad/s.

𝜂 (𝑥, 𝑡) = 𝑎 cos
(
𝑘𝑥 − 𝜔𝑡

)
.

𝑥crest =
𝜔

𝑘
𝑡 + 2𝜋𝑛

𝑘
.

𝑐 =
𝜔

𝑘
= 𝜆𝜈.

A useful three-dimensional generalization is

𝜂 = 𝑎 cos
(
𝑘𝑥 + 𝑙𝑦 +𝑚𝑧 − 𝜔𝑡

)
= 𝑎 cos

(
𝑲 · 𝒙 − 𝜔𝑡

)
,

where 𝑲 = (𝑘, 𝑙,𝑚) is a vector, called the wave number vector, whose
magnitude 𝐾 is given by

𝐾2 = 𝑘2 + 𝑙2 +𝑚2 .

𝜆 =
2𝜋
𝐾
,

𝒄 =
𝜔

𝐾
𝒆𝐾 ,

where 𝒆𝐾 = 𝑲/𝐾 . And, 𝑐𝑥 = 𝜔/𝑘 , 𝑐𝑦 = 𝜔/𝑙 , and 𝑐𝑧 = 𝜔/𝑚 are
each larger than the resultant 𝑐 = 𝜔/𝐾 . Any of the three axis-
specific phase speeds is sometimes called the trace velocity along
its associated axis. If sinusoidal waves exist in a fluid moving with
uniform speed 𝑼 , then the observed phase speed is 𝒄0 = 𝒄 + 𝑼 .

𝜔0 = 𝜔 + 𝑼 · 𝑲 ,
where 𝜔0 is the observed frequency at a fixed point, and 𝜔 is the
intrinsic frequency measured by an observer moving with the flow.

8.1 Linear Liquid-Surface Gravity Waves
We develop the properties of small-slope, small-amplitude grav-
ity waves on the free surface of a constant-density liquid layer of
uniform depth 𝐻 . The limitation to waves with small slopes and
amplitudes implies 𝑎/𝜆 ≪ 1 and 𝑎/𝐻 ≪ 1, respectively. These two
conditions allow the problem to be linearized. Surface tension is
neglected for simplicity. In addition, the air above the liquid is ig-
nored, and the liquid’s motion is presumed to be irrotational and
entirely caused by the surface waves. Because the liquid’s motion is
irrotational, we introduce a velocity potential 𝜙 (𝑥, 𝑧, 𝑡) such that

𝑢 =
𝜕𝜙

𝜕𝑥
, 𝑤 =

𝜕𝜙

𝜕𝑧
,

so that the incompressible continuity equation 𝜕𝑢/𝜕𝑥 + 𝜕𝑤/𝜕𝑧 = 0
implies the Laplace equation

𝜕2𝜙

𝜕𝑥2 + 𝜕2𝜙

𝜕𝑧2 = 0.

There are three boundary conditions. At the bottom 𝑧 = −𝐻 we
impose zero normal velocity,

𝑤 =
𝜕𝜙

𝜕𝑧
= 0 on 𝑧 = −𝐻.

At the free surface, we apply a kinematic boundary condition that
requires the fluid-particle velocity normal to the surface.(

n · u
)
𝑧=𝜂

= n · u𝑠 ,

where n is the unit normal to the free surface. This ensures that the
liquid elements that define the interface do not separate from the
interface, while still allowing motion tangential to the surface. The
free surface is given by the level set

𝐹 (𝑥, 𝑧, 𝑡) = 𝑧 − 𝜂 (𝑥, 𝑡) = 0,

so the upward-pointing unit normal to the surface is

n =
∇𝐹
|∇𝐹 | =

−𝜂𝑥 e𝑥 + e𝑧√︁
𝜂2
𝑥 + 1

, 𝜂𝑥 ≡ 𝜕𝜂

𝜕𝑥
,

and the surface velocity can be taken as purely vertical,

u𝑠 = 𝜂𝑡 e𝑧, 𝜂𝑡 ≡
𝜕𝜂

𝜕𝑡
.
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Using u = 𝑢 e𝑥 +𝑤 e𝑧 gives

(∇𝐹 · u)𝑧=𝜂 = ∇𝐹 · u𝑠 ,
which becomes(

−𝑢 𝜂𝑥 +𝑤
)
𝑧=𝜂

= 𝜂𝑡 , or
𝜕𝜙

𝜕𝑧

����
𝑧=𝜂

= 𝜂𝑡 + 𝜂𝑥
𝜕𝜙

𝜕𝑥

����
𝑧=𝜂

.

For small-slope waves, the last term is small compared to the other
two, so the kinematic boundary condition can be approximated by

𝜕𝜙

𝜕𝑧

����
𝑧=𝜂

≃ 𝜂𝑡 .

𝜕𝜙

𝜕𝑧

����
𝑧=𝜂

=
𝜕𝜙

𝜕𝑧

����
𝑧=0

+ 𝜂 𝜕2𝜙

𝜕𝑧2

����
𝑧=0

+ · · · ≃ 𝜂𝑡 .

When 𝑎/𝜆 is small enough, the most simplified form of the kinematic
boundary condition is

𝜕𝜙

𝜕𝑧

����
𝑧=0

≃ 𝜂𝑡 .

In addition to the kinematic condition, there is a dynamic condition
at the free surface. The pressure just below the surface equals the
ambient pressure, with surface tension neglected.

𝑝
��
𝑧=𝜂

= 0,

where 𝑝 is the gauge pressure. For consistency with the small-slope
approximation, we linearize the Bernoulli equation by dropping the
nonlinear kinetic-energy term 1

2 |∇𝜙 |
2, giving

𝜕𝜙

𝜕𝑡
+ 𝑝

𝜌
+ 𝑔𝑧 ≃ 0,

where the Bernoulli constant has been evaluated on the undisturbed
surface far from the wave. Evaluating at 𝑧 = 𝜂 yields

𝜕𝜙

𝜕𝑡

����
𝑧=𝜂

+ 𝑔𝜂 ≃ 0.

Expanding 𝜙𝑡 about 𝑧 = 0 and retaining the leading term gives
𝜕𝜙

𝜕𝑡

����
𝑧=0

≃ −𝑔𝜂.

For simplicity, consider 𝜂 (𝑥, 0) = 𝑎 cos(𝑘𝑥), consistent with the
sinusoidal wave

𝜂 (𝑥, 𝑡) = 𝑎 cos(𝑘𝑥 − 𝜔𝑡).
Thus, we seek a solution of the form

𝜙 (𝑥, 𝑧, 𝑡) = 𝑓 (𝑧) sin
(
𝑘𝑥 − 𝜔𝑡

)
.

𝑓 ′′ (𝑧) − 𝑘2 𝑓 (𝑧) = 0,
Hence,

𝜙 (𝑥, 𝑧, 𝑡) =
(
𝐴𝑒𝑘𝑧 + 𝐵𝑒−𝑘𝑧

)
sin(𝑘𝑥 − 𝜔𝑡).

𝜕𝜙

𝜕𝑧

����
𝑧=−𝐻

= 𝑘
(
𝐴𝑒−𝑘𝐻 − 𝐵𝑒𝑘𝐻

)
sin(𝑘𝑥 − 𝜔𝑡) = 0,

so
𝐵 = 𝐴𝑒−2𝑘𝐻 .

𝜕𝜙

𝜕𝑧

����
𝑧=0

= 𝑘 (𝐴 − 𝐵) sin(𝑘𝑥 − 𝜔𝑡) = 𝜂𝑡 = 𝑎𝜔 sin(𝑘𝑥 − 𝜔𝑡),

so
𝑘 (𝐴 − 𝐵) = 𝑎𝜔.

𝐴 =
𝑎𝜔

𝑘
(
1 − 𝑒−2𝑘𝐻 ) , 𝐵 =

𝑎𝜔𝑒−2𝑘𝐻

𝑘
(
1 − 𝑒−2𝑘𝐻 ) .

𝜙 (𝑥, 𝑧, 𝑡) = 𝑎𝜔

𝑘

cosh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) sin(𝑘𝑥 − 𝜔𝑡),

𝑢 =
𝜕𝜙

𝜕𝑥
= 𝑎𝜔

cosh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) cos(𝑘𝑥 − 𝜔𝑡),

𝑤 =
𝜕𝜙

𝜕𝑧
= 𝑎𝜔

sinh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) sin(𝑘𝑥 − 𝜔𝑡).

𝜕𝜙

𝜕𝑡

����
𝑧=0

= − 𝑎𝜔
2

𝑘

cosh(𝑘𝐻 )
sinh(𝑘𝐻 ) cos(𝑘𝑥−𝜔𝑡) ≃ −𝑔𝜂 = −𝑔𝑎 cos(𝑘𝑥−𝜔𝑡),

𝜔 =
√︁
𝑔𝑘 tanh(𝑘𝐻 ), or 𝑇 =

√︄
2𝜋𝜆
𝑔

coth
(

2𝜋𝐻
𝜆

)
,

where𝑇 = 2𝜋/𝜔 is the wave period and 𝜆 = 2𝜋/𝑘 is the wavelength.
The phase speed 𝑐 of the surface waves is

𝑐 =
𝜔

𝑘
=

√︂
𝑔

𝑘
tanh(𝑘𝐻 ) =

√︄
𝑔𝜆

2𝜋
tanh

(
2𝜋𝐻
𝜆

)
.

This shows that linear gravity waves on a free surface are generally
dispersive. The phase speed depends on wavenumber, with long
waves, small 𝑘 traveling faster.

Consider the time-dependent perturbation pressure

𝑝′ ≡ 𝑝 + 𝜌𝑔𝑧,

produced by the surface waves.

𝑝′ = −𝜌 𝜕𝜙
𝜕𝑡

= 𝜌
𝑎𝜔2

𝑘

cosh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) cos(𝑘𝑥 − 𝜔𝑡)

= 𝜌𝑔𝑎
cosh

(
𝑘 (𝑧 + 𝐻 )

)
cosh(𝑘𝐻 ) cos(𝑘𝑥 − 𝜔𝑡) .

Although surface gravity waves transport energy, they do not,
in linear theory, produce net transport of fluid parcels. To see this,
consider a fluid particle whose path is x𝑝 (𝑡) = 𝑥𝑝 (𝑡) e𝑥 + 𝑧𝑝 (𝑡) e𝑧 .

𝑑𝑥𝑝

𝑑𝑡
= 𝑢

(
𝑥𝑝 , 𝑧𝑝 , 𝑡

)
,

𝑑𝑧𝑝

𝑑𝑡
=𝑤

(
𝑥𝑝 , 𝑧𝑝 , 𝑡

)
,

𝑑𝑥𝑝

𝑑𝑡
= 𝑎𝜔

cosh
(
𝑘 (𝑧𝑝 + 𝐻 )

)
sinh(𝑘𝐻 ) cos

(
𝑘𝑥𝑝 − 𝜔𝑡

)
,

𝑑𝑧𝑝

𝑑𝑡
= 𝑎𝜔

sinh
(
𝑘 (𝑧𝑝 + 𝐻 )

)
sinh(𝑘𝐻 ) sin

(
𝑘𝑥𝑝 − 𝜔𝑡

)
.

To be consistent with the small-amplitude approximation, we lin-
earize these equations by writing

𝑥𝑝 (𝑡) = 𝑥0 + 𝑥 (𝑡), 𝑧𝑝 (𝑡) = 𝑧0 + 𝑧 (𝑡),

where (𝑥0, 𝑧0) is the mean position of the particle and (𝑥 (𝑡), 𝑧 (𝑡))
is a small excursion.

𝑑𝑥

𝑑𝑡
≃ 𝑎𝜔

cosh
(
𝑘 (𝑧0 + 𝐻 )

)
sinh(𝑘𝐻 ) cos

(
𝑘𝑥0 − 𝜔𝑡

)
,

𝑑𝑧

𝑑𝑡
≃ 𝑎𝜔

sinh
(
𝑘 (𝑧0 + 𝐻 )

)
sinh(𝑘𝐻 ) sin

(
𝑘𝑥0 − 𝜔𝑡

)
.
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Integrating in time gives

𝑥 (𝑡) ≃ −𝑎
cosh

(
𝑘 (𝑧0 + 𝐻 )

)
sinh(𝑘𝐻 ) sin

(
𝑘𝑥0 − 𝜔𝑡

)
,

𝑧 (𝑡) ≃ 𝑎
sinh

(
𝑘 (𝑧0 + 𝐻 )

)
sinh(𝑘𝐻 ) cos

(
𝑘𝑥0 − 𝜔𝑡

)
,

which are purely oscillatory. There is no term that grows with 𝑡 , so
the mean position (𝑥0, 𝑧0) is time-independent to this order.

𝑥2[
𝑎 cosh

(
𝑘 (𝑧0 + 𝐻 )

)
/sinh(𝑘𝐻 )

]2 +
𝑧2[

𝑎 sinh
(
𝑘 (𝑧0 + 𝐻 )

)
/sinh(𝑘𝐻 )

]2 = 1,

showing that the particle moves on an ellipse. Both semi-axes de-
crease with depth, and the minor semi-axis vanishes at 𝑧0 = −𝐻 .
The motion of fluid particles in any vertical column is in phase.
When one is at the top of its orbit, all particles at that 𝑥0 are at the
top of their orbits.
The streamfunction𝜓 can be obtained from

𝜕𝜓

𝜕𝑧
= 𝑢, − 𝜕𝜓

𝜕𝑥
=𝑤,

𝜓 (𝑥, 𝑧, 𝑡) = 𝑎𝜔

𝑘

sinh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) cos(𝑘𝑥 − 𝜔𝑡),

At any fixed time, the bottom 𝑧 = −𝐻 corresponds to𝜓 = 0, and𝜓
also vanishes at certain surface locations where 𝜂 = 0.
The kinetic energy per unit horizontal area, 𝐸𝑘 ,

𝐸𝑘 =
𝜌

2𝜆

∫ 𝜆

0

∫ 0

−𝐻

(
𝑢2 +𝑤2) 𝑑𝑧 𝑑𝑥 .

𝐸𝑘 =
1
2
𝜌𝑔 𝜂2,

where 𝜂2 is the mean-square surface displacement. The potential
energy per unit area, 𝐸𝑝 , is the work required to deform an initially
flat free surface into the disturbed state.

𝐸𝑝 =
𝜌𝑔

𝜆

∫ 𝜆

0

∫ 𝜂

−𝐻
𝑧 𝑑𝑧 𝑑𝑥 − 𝜌𝑔

𝜆

∫ 𝜆

0

∫ 0

−𝐻
𝑧 𝑑𝑧 𝑑𝑥

=
𝜌𝑔

𝜆

∫ 𝜆

0

∫ 𝜂

0
𝑧 𝑑𝑧 𝑑𝑥 =

𝜌𝑔

2𝜆

∫ 𝜆

0
𝜂2 𝑑𝑥 =

1
2
𝜌𝑔 𝜂2 .

Thus,

𝐸𝑝 =
1
2
𝜌𝑔𝜂2, 𝐸 = 𝐸𝑘 + 𝐸𝑝 = 𝜌𝑔𝜂2 .

For a sinusoidal wave with amplitude 𝑎, 𝜂2 = 𝑎2/2, and

𝐸 =
1
2
𝜌𝑔 𝑎2,

is the total wave energy per unit horizontal area. The time-averaged
energy flux 𝐸𝐹 across the plane 𝑥 = 0 is the pressure work done by
fluid in 𝑥 < 0 on fluid in 𝑥 > 0.

𝐸𝐹 =
𝜔

2𝜋

∫ 2𝜋/𝜔

0

∫ 0

−𝐻
𝑝 𝑢 𝑑𝑧 𝑑𝑡 =

𝜔

2𝜋

∫ 2𝜋/𝜔

0

∫ 0

−𝐻

(
𝑝′ − 𝜌𝑔𝑧

)
𝑢 𝑑𝑧 𝑑𝑡 .

= 𝜌𝑎2 𝜔3

𝑘 sinh2 (𝑘𝐻 )

∫ 0

−𝐻
cosh2 (𝑘 (𝑧 + 𝐻 )) 𝑑𝑧

=
1
2
𝜌𝑔𝑎2

( 𝑐
2

) [
1 + 2𝑘𝐻

sinh(2𝑘𝐻 )

]
.

Deep-water waves.

𝑐 =

√︂
𝑔

𝑘
tanh(𝑘𝐻 ) .

For 𝐻/𝜆 ≫ 1, 𝑘𝐻 ≫ 1, tanh(𝑘𝐻 ) → 1.

𝑐 ≃
√︂
𝑔

𝑘
=

√︂
𝑔𝜆

2𝜋
,

Waves satisfying 𝐻 > 𝜆/3 are classified as deep-water waves. They
are strongly dispersive, since 𝑐 depends on 𝜆. For 𝑘𝐻 ≫ 1,

cosh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) ≃

sinh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) ≃ 𝑒𝑘𝑧,

𝑥 (𝑡) ≃ −𝑎𝑒𝑘𝑧0 sin(𝑘𝑥0 − 𝜔𝑡), 𝑧 (𝑡) ≃ 𝑎𝑒𝑘𝑧0 cos(𝑘𝑥0 − 𝜔𝑡),
describing circular orbits of radius 𝑎𝑒𝑘𝑧0 , decreasing with depth. At
the surface 𝑧0 = 0, the orbit radius is 𝑎.

𝑢 ≃ 𝑎𝜔𝑒𝑘𝑧 cos(𝑘𝑥 − 𝜔𝑡), 𝑤 ≃ 𝑎𝜔𝑒𝑘𝑧 sin(𝑘𝑥 − 𝜔𝑡).

At a fixed spatial point, the velocity vector rotates with constant
magnitude 𝑎𝜔𝑒𝑘𝑧 and angular frequency 𝜔 .

𝑝′ ≃ 𝜌𝑔𝑎𝑒𝑘𝑧 cos(𝑘𝑥 − 𝜔𝑡),

Wave-induced pressure fluctuations decay exponentially with depth.
Shallow-water waves.

For 𝐻/𝜆 ≪ 1, we use tanh(𝑥) ≃ 𝑥 for small 𝑥 . Then,

𝑐 ≃
√︁
𝑔𝐻 .

Waves are classified as shallow-water waves only if their wavelength
exceeds about 14𝐻 . Shallow-water gravity waves are non-dispersive.
𝑐 depends on 𝐻 but not on 𝜆.

cosh
(
𝑘 (𝑧 + 𝐻 )

)
≃ 1, sinh

(
𝑘 (𝑧 + 𝐻 )

)
≃ 𝑘 (𝑧 + 𝐻 ), sinh(𝑘𝐻 ) ≃ 𝑘𝐻,

𝑥 (𝑡) ≃ − 𝑎

𝑘𝐻
sin(𝑘𝑥0 − 𝜔𝑡), 𝑧 (𝑡) ≃ 𝑎

(
1 + 𝑧0

𝐻

)
cos(𝑘𝑥0 − 𝜔𝑡),

which describe thin ellipses whose minor semi-axis decreases lin-
early to zero at the bottom.

𝑢 ≃ 𝑎𝜔

𝑘𝐻
cos(𝑘𝑥 − 𝜔𝑡), 𝑤 ≃ 𝑎𝜔

(
1 + 𝑧

𝐻

)
sin(𝑘𝑥 − 𝜔𝑡),

so |𝑤 | ≪ |𝑢 | and vertical accelerations are small.

𝑝′ ≃ 𝜌𝑔𝑎 cos(𝑘𝑥 − 𝜔𝑡) = 𝜌𝑔𝜂,

which is independent of depth. The pressure field is purely hydro-
static. The departure from the undisturbed state equals the hydro-
static pressure due to the surface elevation 𝜂 everywhere in the
water column. This is why shallow-water gravity waves are some-
times called hydrostatic waves.
Finally, the depth dependence of the phase speed explains the

refraction of long waves approaching coastlines or islands as the
depth 𝐻 decreases. The portion of a wave entering shallower water
slows down relative to the part still in deeper water, causing the
crest lines to rotate and tend to align with depth contours such
as shorelines or circular isobaths around islands. This bending of
wave paths in a spatially varying medium is the phenomenon of
wave refraction, analogous to refraction of light in a non-uniform
refractive index field.
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8.2 Standing Waves
If twowaves of equal amplitude andwavelength traveling oppositely,
their superposition can produce a non-propagating pattern.

𝜂 = 𝑎 cos(𝑘𝑥 − 𝜔𝑡) + 𝑎 cos(𝑘𝑥 + 𝜔𝑡) = 2𝑎 cos(𝑘𝑥) cos(𝜔𝑡) .

At locations where 𝑘𝑥 = ±𝜋/2, ±3𝜋/2, . . . , the surface displacement
𝜂 is identically zero for all 𝑡 . These fixed points of zero displacement
are called nodes. For such a motion the free surface does not carry
disturbances downstream. Instead, the surface oscillates vertically
with frequency 𝜔 , and the oscillation amplitude varies in space
while the nodal points remain fixed. This type of motion is called a
standing wave.

𝜓 =
𝑎𝜔

𝑘

sinh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 )

[
cos(𝑘𝑥 − 𝜔𝑡) − cos(𝑘𝑥 + 𝜔𝑡)

]
=

2𝑎𝜔
𝑘

sinh
(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) sin(𝑘𝑥) sin(𝜔𝑡).

Standing waves naturally arise in a confined region of water, such as
a tank, pool, or lake, when traveling waves reflect from the bound-
aries. In a lake this type of oscillation is called a seiche. Consider
an idealized rectangular tank of length 𝐿, uniform depth 𝐻 , and
vertical end walls, with the waves assumed independent of 𝑦.

𝑢 = 2𝑎𝜔
cosh

(
𝑘 (𝑧 + 𝐻 )

)
sinh(𝑘𝐻 ) sin(𝑘𝑥) sin(𝜔𝑡).

Let the vertical walls be located at 𝑥 = 0 and 𝑥 = 𝐿. The no-
penetration condition at these walls requires

𝑢 (𝑥 = 0) = 0, 𝑢 (𝑥 = 𝐿) = 0.

sin(𝑘𝐿) = 0 ⇒ 𝑘𝐿 = 𝑛𝜋, 𝑛 = 1, 2, 3, . . . .

Hence the allowed wavelengths are

𝜆 =
2𝜋
𝑘

=
2𝐿
𝑛
.

𝜔 =

√︄
𝑛𝜋𝑔

𝐿
tanh

(
𝑛𝜋𝐻

𝐿

)
, 𝑛 = 1, 2, 3, . . . .

8.3 Group Velocity, Energy Flux, and Dispersion
Wavelength-dependent/dispersive propagation is common forwaves
that travel on interfaces between different materials. Examples are
Rayleigh waves (vacuum and a solid), Stonely waves (a solid and an-
other material), or interface waves (two different immiscible liquids).
Here we consider only air–water interface waves and emphasize
deep-water gravity waves for which 𝑐 ∝

√
𝜆. In a dispersive system,

the energy of a wave component does not propagate at the phase
velocity 𝑐 = 𝜔/𝑘 , but at the group velocity defined as 𝑐𝑔 = 𝑑𝜔/𝑑𝑘 .

𝜂 = 𝑎 cos(𝑘1𝑥 − 𝜔1𝑡) + 𝑎 cos(𝑘2𝑥 − 𝜔2𝑡)

= 2𝑎 cos
(

1
2
Δ𝑘 𝑥 − 1

2
Δ𝜔 𝑡

)
cos(𝑘𝑥 − 𝜔𝑡),

where Δ𝑘 = 𝑘2 − 𝑘1 and Δ𝜔 = 𝜔2 − 𝜔1, while 𝑘 = (𝑘1 + 𝑘2)/2 and
𝜔 = (𝜔1 + 𝜔2)/2. Here, cos(𝑘𝑥 − 𝜔𝑡) is a progressive wave with a
phase speed 𝑐 = 𝜔/𝑘 . However, its amplitude 2𝑎 is modulated by a

slowly varying function cos(Δ𝑘 𝑥/2 − Δ𝜔 𝑡/2), which has a large
wavelength 4𝜋/Δ𝑘 , a long period 4𝜋/Δ𝜔 , and propagates at a speed

𝑐𝑔 =
Δ𝜔

Δ𝑘
≈ 𝑑𝜔

𝑑𝑘
,

where the approximate equality becomes exact in the limit as Δ𝑘 and
Δ𝜔 → 0. Multiplication of a rapidly varying sinusoid and a slowly
varying sinusoid, generates repeating wave groups. The individual
wave crests and troughs propagate with the speed 𝑐 = 𝜔/𝑘 , but
the envelope of the wave groups travels with the speed 𝑐𝑔 , which
is therefore called the group velocity. If 𝑐𝑔 < 𝑐 , then individual
wave crests appear spontaneously at a nodal point, proceed forward
through the wave group, and disappear at the next nodal point. If,
on the other hand, 𝑐𝑔 > 𝑐 , then individual wave crests emerge from
a forward nodal point and vanish at a backward nodal point. The
subsequent evolution of the wave is approximately described by

𝜂 = 𝑎
(
𝑥 − 𝑐𝑔𝑡

)
cos(𝑘𝑥 − 𝜔𝑡),

where 𝑐𝑔 = 𝑑𝜔/𝑑𝑘 . This shows that the amplitude of a wave packet
travels with the group speed. It follows that 𝑐𝑔 must equal the speed
of propagation of energy of a certain wavelength. The fact that 𝑐𝑔 is
the speed of energy propagation is also evident from the behavior
of modulated wave trains because the nodal points travel at 𝑐𝑔 and
no energy crosses nodal points since 𝑝′ = 0 there.

𝑐𝑔 =
𝑐

2

(
1 + 2𝑘𝐻

sinh(2𝑘𝐻 )

)
,

which has two limiting cases.

𝑐𝑔 =
𝑐

2
(deep water), 𝑐𝑔 = 𝑐 (shallow water).

The group velocity of deep-water gravity waves is half the deep-
water phase speed while shallow-water waves are non-dispersive
with 𝑐 = 𝑐𝑔 . For a linear non-dispersive system, any waveform
preserves its shape as it travels because all the wavelengths that
make up the waveform travel at the same speed.

𝐸𝐹 = 𝐸
𝑐

2

(
1 + 2𝑘𝐻

sinh(2𝑘𝐻 )

)
= 𝐸𝑐𝑔,

where 𝐸 = 𝜌𝑔𝑎2/2 is the average energy in thewater column per unit
horizontal area. This signifies that the rate of transmission of energy
of a sinusoidal wave component is the wave energy times the group
velocity, and reinforces the interpretation of the group velocity
as the speed of propagation of wave energy. In three dimensions,
the dispersion relation 𝜔 = 𝜔 (𝑘, ℓ,𝑚) may depend on all three
components of the wave number vector 𝑲 = (𝑘, ℓ,𝑚).

𝑐𝑔𝑖 =
𝜕𝜔

𝜕𝐾𝑖
.

Another way to understand the group velocity is to consider the 𝑘
or 𝜆 determined by an observer traveling at speed 𝑐𝑔 with a slowly
varying wave train described by

𝜂 = 𝑎(𝑥, 𝑡) cos
[
𝜃 (𝑥, 𝑡)

]
,

For a slowly varying wave train, define the local wave number
𝑘 (𝑥, 𝑡) and the local frequency𝜔 (𝑥, 𝑡) as the rate of change of phase
in space and time, respectively.

𝑘 (𝑥, 𝑡) ≡ 𝜕𝜃

𝜕𝑥
, 𝜔 (𝑥, 𝑡) ≡ − 𝜕𝜃

𝜕𝑡
⇒ 𝜕𝑘

𝜕𝑡
+ 𝜕𝜔
𝜕𝑥

= 0 ⇒ 𝜕𝑘

𝜕𝑡
+𝑐𝑔

𝜕𝑘

𝜕𝑥
= 0.
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Now consider the same traveling observer, but allow there to be
smooth variations in the water depth 𝐻 (𝑥).

𝜔 =

√︃
𝑔𝑘 tanh

[
𝑘𝐻 (𝑥)

]
,

𝜕𝜔

𝜕𝑡
+ 𝑐𝑔

𝜕𝜔

𝜕𝑥
= 0.

8.4 Nonlinear Waves in Shallow and Deep Water
Consider a finite-amplitude surface displacement consisting of a
wave crest and trough, propagating in shallow water of undisturbed
depth 𝐻 . Let a little wavelet be superposed on the crest at point
𝑥 ′, at which the water depth is 𝐻0 and the fluid velocity due to the
wave motion is 𝑢 (𝑥 ′). Relative to an observer moving with the fluid
velocity 𝑢, the wavelet propagates at the local shallow-water speed
𝑐0 =

√︁
𝑔𝐻0. The speed of the wavelet relative to a frame of reference

fixed in the undisturbed fluid is therefore 𝑐 = 𝑐0 + 𝑢. It is apparent
that the local wave speed 𝑐 is no longer constant because 𝑐0 (𝑥) and
𝑢 (𝑥) are variables. This is in contrast to the linearized theory in
which 𝑢 is negligible and 𝑐0 is constant because 𝐻0 ≈ 𝐻 .

Let us now examine the effect of variable phase speed on the
wave profile. The value of 𝑐0 is larger for points near the wave crest
than for points in the wave trough. It follows that the wave speed 𝑐
is larger for points on the crest than for points on the trough, so that
the waveform deforms as it propagates, the crest region tending to
overtake the trough region.

The front face is rising with time, and this implies an increase in
pressure at any depth within the liquid. The net effect of nonlinear-
ity is a steepening of the compression region. For finite-amplitude
waves in a non-dispersive medium like shallow water, therefore,
there is an important distinction between compression and expan-
sion regions. A compression region tends to steepenwith time, while
an expansion region tends to flatten out. This eventually would lead
to a wave shape in which there are three values of surface eleva-
tion at a point. This situation is certainly possible for time-evolving
waves and is readily observed as plunging breakers develop in the
surf zone along ocean coastlines.

To analyze a hydraulic jump, consider the flow in a shallow canal
of depth 𝐻 . If the flow speed is 𝑢, we may define a dimensionless
speed via the Froude number,

Fr ≡ 𝑢√︁
𝑔𝐻

=
𝑢

𝑐
.

The Froude number is analogous to the Mach number in compress-
ible flow. The flow is called supercritical if Fr > 1, and subcritical if
Fr < 1. For the situation where the jump is stationary, the upstream
flow is supercritical while the downstream flow is subcritical, just as
a compressible flow changes from supersonic to subsonic by going
through a shockwave. The depth of flow is greater downstream of a
hydraulic jump, just as the gas pressure is greater downstream of a
shockwave. However, dissipative processes act within shockwaves
and hydraulic jumps so that mechanical energy is converted into
thermal energy in both cases. An example of a stationary hydraulic
jump is found at the foot of a dam, where the flow almost always
reaches a supercritical state because of the free fall. A tidal bore

propagating into a river mouth is an example of a propagating hy-
draulic jump. A circular hydraulic jump can be made by directing a
vertically falling water stream onto a flat horizontal surface.

The planar hydraulic jump can be analyzed by using a rectangular
control volume, the goal being to determine how the depth ratio
depends on the upstream Froude number. 𝑄 is the volume flow
rate per unit width normal to the plane of the paper, then mass
conservation requires

𝑄 = 𝑢1𝐻1 = 𝑢2𝐻2 .

Conserving momentum with the same control volume produces

𝜌𝑄 (𝑢2 − 𝑢1) =
1
2
𝜌𝑔 (𝐻 2

1 − 𝐻 2
2 ),

where the left-hand term comes from the outlet and inlet momentum
fluxes, and the right-hand term is the hydrostatic pressure force.

𝑄2
(

1
𝐻2

− 1
𝐻1

)
=

1
2
𝑔 (𝐻 2

1 − 𝐻 2
2 ) .(

𝐻2

𝐻1

)2
+ 𝐻2

𝐻1
− 2Fr2

1 = 0,

where

Fr2
1 =

𝑄2

𝑔𝐻 3
1
=
𝑢2

1
𝑔𝐻1

.

The physically meaningful solution is

𝐻2

𝐻1
=

1
2

(
−1 +

√︃
1 + 8Fr2

1

)
.

For supercritical flows Fr1 > 1, it requires that 𝐻2 > 𝐻1, and this
verifies that water depth increases through a hydraulic jump.

Though a solution with 𝐻2 < 𝐻1 for Fr1 < 1 is mathematically
allowed, such a solution violates the second law of thermodynam-
ics, implying an increase of mechanical energy through the jump.
Consider the mechanical energy of a fluid particle at the surface,

𝐸 =
𝑢2

2
+ 𝑔𝐻 =

𝑄2

2𝐻 2 + 𝑔𝐻 .

𝐸2 − 𝐸1 = −(𝐻2 − 𝐻1)
𝑔 (𝐻2 − 𝐻1)2

4𝐻1𝐻2
.

This shows that𝐻2 < 𝐻1 implies 𝐸2 > 𝐸1, which violates the second
law of thermodynamics. The mechanical energy, in fact, decreases
in a hydraulic jump because of the action of viscosity.
In a non-dispersive medium, nonlinear effects may continually

accumulate until they become large changes. Such an accumulation
is prevented in a dispersive medium because the different Fourier
components propagate at different speeds and tend to separate from
each other. In a dispersive system, then, nonlinear steepening could
cancel out the dispersive spreading, resulting in finite-amplitude
waves of constant form.

In 1847 Stokes showed that periodic waves of finite amplitude are
possible in deep water. In terms of a power series in the amplitude 𝑎,
he showed that the surface deflection of irrotational waves in deep
water is given by

𝜂 = 𝑎 cos[𝑘 (𝑥−𝑐𝑡)]+1
2
𝑘𝑎2 cos[2𝑘 (𝑥−𝑐𝑡)]+3

8
𝑘2𝑎3 cos[3𝑘 (𝑥−𝑐𝑡)]+· · · ,
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where the speed of propagation is

𝑐 =

√︂
𝑔

𝑘
(1 + 𝑘2𝑎2 + · · · ).

Periodic finite-amplitude irrotational waves in deep water are fre-
quently called Stokes waves. They have flattened troughs and peaked
crests. The maximum possible amplitude is 𝑎max = 0.07𝜆, at which
point the crest becomes a sharp 120◦ angle. Attempts at generating
waves of larger amplitude result in the appearance of white foam at
these sharp crests.

When finite-amplitude waves are present, fluid particles no longer
trace closed orbits, but undergo a slow drift in the direction of wave
propagation. This is called Stokes drift. The mean velocity of a fluid
particle is therefore not zero. The drift occurs because the particle
moves forward faster when at the top of its trajectory than it does
backward when at the bottom of its trajectory.
The fluid particle trajectory x𝑝 (𝑡) = 𝑥𝑝 (𝑡) e𝑥 + 𝑧𝑝 (𝑡) e𝑧 ,

d𝑥𝑝 (𝑡)
d𝑡

= 𝑢 (𝑥𝑝 , 𝑧𝑝 , 𝑡) = 𝑢 (𝑥0, 𝑧0, 𝑡) + 𝑥
𝜕𝑢

𝜕𝑥

����
𝑥0,𝑧0

+ 𝑧 𝜕𝑢

𝜕𝑧

����
𝑥0,𝑧0

+ · · · ,

d𝑧𝑝 (𝑡)
d𝑡

=𝑤 (𝑥𝑝 , 𝑧𝑝 , 𝑡) =𝑤 (𝑥0, 𝑧0, 𝑡) + 𝑥
𝜕𝑤

𝜕𝑥

����
𝑥0,𝑧0

+ 𝑧 𝜕𝑤

𝜕𝑧

����
𝑥0,𝑧0

+ · · · ,

where (𝑥0, 𝑧0) is the fluid element location absence of wave motion.
For deep-water gravity waves, the Stokes drift speed

𝑢𝐿 = 𝑎2𝜔𝑘 e2𝑘𝑧0 .

For arbitrary water depth, it may be generalized to

𝑢𝐿 = 𝑎2𝜔𝑘
cosh

[
2𝑘 (𝑧0 + 𝐻 )

]
2 sinh2 (𝑘𝐻 )

.

The Stokes drift causes mass transport in the fluid so it is also called
the mass transport velocity.

9 Laminar Flow
For low values of the Reynolds number, the entire flow may be
influenced by viscosity, and inviscid flow theory is no longer even
approximately correct. Viscous flows generically fall into two cate-
gories, laminar and turbulent, but the boundary between them is
imperfectly defined. The basic difference between the two categories
is phenomenological and was dramatically demonstrated in 1883 by
Reynolds, who injected a thin stream of dye into the flow of water
through a tube. At low flow rates, the dye stream was observed to
follow a well-defined straight path, indicating that the fluid moved
in parallel layers with no unsteady macroscopic mixing or overturn-
ing motion of the layers. Such smooth orderly flow is called laminar.
However, if the flow rate was increased beyond a certain critical
value, the dye streak broke up into irregular filaments and spread
throughout the cross-section of the tube, indicating the presence of
unsteady, apparently chaotic three-dimensional macroscopic mixing
motions. Such irregular disorderly flow is called turbulent. Reynolds
demonstrated that the transition from laminar to turbulent flow
always occurred at or near a fixed value of the ratio that bears his
name, the Reynolds number,

Re =
𝑈𝑑

𝜈
≈ 2000 to 3000,

where 𝑈 is the velocity averaged over the tube’s cross-section, 𝑑
is the tube diameter, and 𝜈 = 𝜇/𝜌 is the kinematic viscosity. The
fluid’s kinematic viscosity specifies the propensity for vorticity to
diffuse through a fluid. Since 𝜈 has the units of (length)2/time, the
kinematic viscosity 𝜈 is sometimes called the momentum diffusivity.
The velocity boundary conditions on a solid surface are

𝒏 · 𝒖𝑠 = 𝒏 · 𝒖 on the surface,
𝒕 · 𝒖𝑠 = 𝒕 · 𝒖 on the surface,

where 𝒖𝑠 is the velocity of the surface, 𝒏 is the normal to the surface,
and 𝒕 is the tangent to the surface in the plane of interest. Here,
fluid density will be assumed constant, and the frame of reference
will be inertial. Thus, gravity can be dropped from the momentum
equation as long as no free surface is present.

9.1 Exact Solutions for Steady Incompressible Viscous
Flow

9.1.1 Steady Flow between Parallel Plates. Consider a viscous, in-
compressible fluid flowing between two infinite parallel plates aligned
with the 𝑥-axis. The lower plate is at 𝑦 = 0 and is stationary, while
the upper plate at 𝑦 = ℎ moves in the 𝑥-direction with speed𝑈 . A
constant pressure gradient 𝜕𝑝/𝜕𝑥 ≠ 0 is imposed in the streamwise
direction. We assume there is no variation in the 𝑧-direction, so that
𝑤 = 0 and 𝜕/𝜕𝑧 = 0. For a steady, fully developed flow,

𝒖 = (𝑢 (𝑦), 0, 0),

so that 𝜕𝑢/𝜕𝑥 = 0. The continuity equation

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0

then reduces to 𝜕𝑣/𝜕𝑦 = 0, and the boundary conditions 𝑣 = 0 at
𝑦 = 0 and 𝑦 = ℎ imply 𝑣 = 0 everywhere in the channel. Under these
conditions the 𝑥- and 𝑦-momentum equations become

0 = − 1
𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 d2𝑢

d𝑦2 ,

0 = − 1
𝜌

𝜕𝑝

𝜕𝑦
.

Hence, 𝑝 = 𝑝 (𝑥), and the pressure gradient must be a constant. The
𝑥-momentum equation can then be written as

𝜇
d2𝑢

d𝑦2 =
d𝑝
d𝑥
,

where 𝜇 = 𝜌𝜈 is the dynamic viscosity.

𝑢 (𝑦) = 1
2𝜇

d𝑝
d𝑥

𝑦2 +𝐴𝑦 + 𝐵,

where 𝐴 and 𝐵 are constants of integration. The no-slip boundary
conditions 𝑢 (0) = 0 and 𝑢 (ℎ) =𝑈 determine these constants

𝑢 (𝑦) =𝑈 𝑦

ℎ
− 1

2𝜇
d𝑝
d𝑥

𝑦 (ℎ − 𝑦) .
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Depending on the sign of d𝑝/d𝑥 , it may be concave or convex. The
volume flow rate per unit width of the channel is

𝑞 =

∫ ℎ

0
𝑢 (𝑦) d𝑦

=

∫ ℎ

0

[
𝑈
𝑦

ℎ
− 1

2𝜇
d𝑝
d𝑥

𝑦 (ℎ − 𝑦)
]

d𝑦

=
𝑈ℎ

2

[
1 − ℎ2

6𝜇𝑈
d𝑝
d𝑥

]
.

The average velocity across the gap, 𝑉 = 𝑞/ℎ, is therefore

𝑉 =
1
ℎ

∫ ℎ

0
𝑢 (𝑦) d𝑦 =

𝑈

2

[
1 − ℎ2

6𝜇𝑈
d𝑝
d𝑥

]
.

A negative pressure gradient increases the flow rate, while a positive
gradient decreases it.

• Plane Couette flow. If the motion is driven solely by the
moving upper plate, so that d𝑝/d𝑥 = 0,

𝑢 (𝑦) =𝑈 𝑦

ℎ
.

The shear stress is uniform across the channel,

𝜏 = 𝜇
d𝑢
d𝑦

= 𝜇
𝑈

ℎ
.

• Plane Poiseuille flow. If both plates are stationary (𝑈 = 0)
and the flow is driven purely by the pressure gradient, then

𝑢 (𝑦) = − 1
2𝜇

d𝑝
d𝑥

𝑦 (ℎ − 𝑦),

a parabolic distribution. The corresponding shear stress is

𝜏 = 𝜇
d𝑢
d𝑦

= −
(
ℎ

2
− 𝑦

)
d𝑝
d𝑥
.

9.1.2 Steady Flow in a Round Tube. Next consider steady, fully
developed laminar flow through a circular tube of radius 𝑎. We
employ cylindrical coordinates (𝑅, 𝜙, 𝑧) with the tube axis along 𝑧.
The only nonzero component of velocity is the axial component
𝑢𝑧 (𝑅), so that

𝒖 = (0, 0, 𝑢𝑧 (𝑅)).
This automatically satisfies the continuity equation for incompress-
ible flow. From the radial and azimuthal momentum equations
one finds that the pressure does not depend on 𝑅 or 𝜙 , and hence
𝑝 = 𝑝 (𝑧) is a linear function of 𝑧. The 𝑧-momentum equation reduces
to

0 = −d𝑝
d𝑧

+ 𝜇 1
𝑅

d
d𝑅

(
𝑅

d𝑢𝑧
d𝑅

)
.

Since d𝑝/d𝑧 is constant, this equation can be integrated twice
with respect to 𝑅 to give

𝑢𝑧 (𝑅) =
1

4𝜇
d𝑝
d𝑧

𝑅2 +𝐴 ln𝑅 + 𝐵.

To keep the velocity finite at the axis 𝑅 = 0, we must set 𝐴 = 0. The
no-slip condition 𝑢𝑧 (𝑎) = 0 then yields

𝐵 = − 1
4𝜇

d𝑝
d𝑧
𝑎2,

and hence the velocity profile becomes

𝑢𝑧 (𝑅) =
𝑅2 − 𝑎2

4𝜇
d𝑝
d𝑧
,

a parabola of maximum magnitude at the centerline 𝑅 = 0.
From Appendix B, the shear stress in cylindrical coordinates is

𝜏𝑧𝑅 = 𝜇

(
𝜕𝑢𝑅

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑅

)
.

Here 𝑢𝑅 = 0, so

𝜏 ≡ 𝜏𝑧𝑅 = 𝜇
d𝑢𝑧
d𝑅

=
𝑅

2
d𝑝
d𝑧
,

and we obtain
𝜏 (𝑅) = 𝑅

2
d𝑝
d𝑧
,

which varies linearly with radius. Its magnitude at the wall 𝑅 = 𝑎 is

𝜏𝑤 =
𝑎

2
d𝑝
d𝑧
.

The volume flow rate through the tube is

𝑄 =

∫ 𝑎

0
𝑢𝑧 (𝑅) 2𝜋𝑅 d𝑅

=

∫ 𝑎

0

𝑅2 − 𝑎2

4𝜇
d𝑝
d𝑧

2𝜋𝑅 d𝑅

= − 𝜋𝑎4

8𝜇
d𝑝
d𝑧
,

where the minus sign arises because d𝑝/d𝑧 < 0 for flow in the
positive 𝑧-direction. The average velocity in the tube is

𝑉 =
𝑄

𝜋𝑎2 = − 𝑎2

8𝜇
d𝑝
d𝑧
.

As in the plane channel, the linear axial pressure variation and the
stress distribution of the laminar solution also have counterparts in
turbulent pipe flow when suitable averages are taken.

9.1.3 Steady Flow between Concentric Rotating Cylinders. As a third
example, consider viscous flow in the annular region between two
infinitely long, concentric cylinders. The inner cylinder of radius
𝑅1 rotates with angular velocity 𝑈1, and the outer cylinder of ra-
dius 𝑅2 rotates with angular velocity 𝑈2. We again use cylindrical
coordinates (𝑅, 𝜙, 𝑧) and assume the flow is purely azimuthal and
independent of 𝜙 and 𝑧,

𝒖 = (0, 𝑢𝜙 (𝑅), 0) .
The continuity equation is automatically satisfied. The radial and
azimuthal momentum equations then reduce to

𝑢2
𝜙

𝑅
=

1
𝜌

d𝑝
d𝑅
, 0 = 𝜇

d
d𝑅

[
1
𝑅

d
d𝑅

(𝑅𝑢𝜙 )
]
.

The first equation states that the radial pressure gradient balances
the centrifugal acceleration; the second is the governing equation
for the tangential velocity. Integrating the azimuthal equation twice
yields

𝑢𝜙 (𝑅) = 𝐴𝑅 + 𝐵

𝑅
,

where 𝐴 and 𝐵 are constants. The no-slip conditions at the cylinder
surfaces,

𝑢𝜙 (𝑅1) =𝑈1𝑅1, 𝑢𝜙 (𝑅2) =𝑈2𝑅2,
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determine 𝐴 and 𝐵:

𝐴 =
𝑈2𝑅

2
2 −𝑈1𝑅

2
1

𝑅2
2 − 𝑅2

1
,

𝐵 =
(𝑈2 −𝑈1) 𝑅2

1𝑅
2
2

𝑅2
2 − 𝑅2

1
.

Substitution gives the general velocity distribution

𝑢𝜙 (𝑅) =
1

𝑅2
2 − 𝑅2

1

[
(𝑈2𝑅

2
2 −𝑈1𝑅

2
1) 𝑅 − (𝑈2 −𝑈1)

𝑅2
1𝑅

2
2

𝑅

]
.

Two limiting cases are especially instructive:
• Rotating cylinder in an unbounded fluid. Let 𝑅2 → ∞
with𝑈2 = 0, so the outer cylinder recedes to infinity and the
fluid extends without bound. Simplifying (??) gives

𝑢𝜙 (𝑅) =
𝑈1𝑅

2
1

𝑅
,

which has the form of an ideal (irrotational) vortex for 𝑅 > 𝑅1.
Although the flow is irrotational, viscous shear stresses are
present. In cylindrical coordinates the relevant component is

𝜏𝑅𝜙 = 𝜇

[
1
𝑅

𝜕𝑢𝑅

𝜕𝜙
+ 𝑅 𝜕

𝜕𝑅

(𝑢𝜙
𝑅

)]
,

and here 𝑢𝑅 = 0, so

𝜏𝑅𝜙 = 2𝜇
𝑈1𝑅

2
1

𝑅2 .

The mechanical power supplied to the fluid (per unit cylinder
length) equals the rate of viscous energy dissipation in the
flow.

• Solid-body rotation in a cylindrical tank. Let 𝑅1 → 0 and
𝑈1 = 0 so that the inner cylinder disappears, and the outer
cylinder of radius 𝑅2 rotates at angular velocity𝑈2. Then (??)
reduces to

𝑢𝜙 (𝑅) =𝑈2𝑅,

corresponding to solid-body rotation.
In each of the three examples of this section, the velocity field

is confined between solid boundaries, and the symmetries of the
configuration remove the convective acceleration terms from the
governing equations. Many other exact solutions of the steady in-
compressible Navier–Stokes equations (both internal and external)
exist and can be found in specialized references. Before turning to
additional examples and the entrance-region development of inter-
nal flows, we next introduce a brief treatment of classical lubrication
theory, which is another important limiting case of viscous flow in
thin geometries.
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