Introduction To Fluid Dynamics

DIWEN XU, University of Washington, USA

These notes are primarily based on the textbook by Kundu et al. [1].

1 Fluid
1.1 Solids, Liquids, and Gases

A fluid deforms continuously under any nonzero shear stress. A
solid returns to a preferred shape when unloaded, if elastic. Liquids
are nearly incompressible and form a free surface in gravity. Gases
expand to fill their container.

1.2 Continuum Hypothesis

Although fluids are molecular, most macroscopic phenomena can
be modeled by treating them as continua when the Knudsen number
Kn = ¢/L < 1, where ¢ is the molecular mean free path and L a
characteristic length.

For a gas with mean velocity u, the Maxwell velocity distribution is
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with number density n, molecular mass m, temperature T, and Boltz-
mann constant kg. When u = 0,
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The molecular mean free path ¢ (hard-sphere model, diameter d) is
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1.3 Molecular Transport Phenomena

Random molecular motion produces diffusive fluxes of species, heat,
and momentum.

1.3.1  Species Diffusion (Fick’s Law). For mass fraction Y of a con-
stituent in a mixture,

Jm =—-pknVY,
where J,, is mass flux, p is density, and k;,, is the mass diffusivity.
1.3.2 Heat Conduction (Fourier’s Law).
q=—kVT,

with heat flux q and thermal conductivity k.
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1.3.3  Momentum Diffusion (Newton’s Law of Viscosity). For simple
shear u = u(y), the shear stress is
du
T=p—,
H dy

with dynamic viscosity p. The kinematic viscosity is

In gases, i grows roughly as T'/? at fixed p. In liquids, y generally
decreases with T.

1.4 Surface Tension

At an interface, unbalanced molecular forces produce an effective
surface tension o (N/m), causing pressure jumps across curved sur-
faces (Laplace pressure). For a sphere of radius R,
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1.5 Fluid Statics

Absolute pressure p relates to gauge pressure by pgauge = p—Patm- In
a fluid at rest, shear stresses vanish and the normal stress is isotropic.
Vertical force balance on a fluid element gives the hydrostatic rela-
tion
dp _
dz

The total force due to pressure acting on a surface A is
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where P is the scalar pressure field, 7 is the outward unit normal.
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Thus, the pressure force per unit volume is
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1.6 Classical Thermodynamics
1.6.1  First Law (per unit mass).
dg + dw = de.

For a reversible, quasi-static compression/expansion with specific
volume v = 1/p (volume per unit mass),

de =dq — pdo.

1.6.2  Equations of State. For a simple compressible substance (sin-
gle component), thermal and caloric equations of state is

p=p@T), e=epT).


https://orcid.org/0009-0001-8574-8944
https://orcid.org/0009-0001-8574-8944

1.6.3  Enthalpy and Specific Heats.
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The subscript p signifies that the derivative is taken at constant
pressure. In reversible processes where the only work is p do,

(const. pressure) dq = ¢, dT, (const. volume) dg = ¢, dT.

1.6.4 Second Law (Entropy). For a reversible path 1 — 2,

2
dgrev
32—31:/ %.
1

Clausius—Duhem inequality for arbitrary process,
2d
Sy — 81 = —q
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Transport coefficients must be positive, species diffusivity k,, > 0,
thermal conductivity k > 0, viscosity p > 0.

Tds = dgrey =de + pdo =dh —odp.
For an ideal gas,h =e+pv =¢, T+ RT =c, T. Thus,
daT dp

ds=c PT—R?

Integrating between (T, p) and (T, p,),

As =cp ln(TT ) Rln(pﬁ)

Define the potential temperature 6 as
R
0=T (p O) , K= —.
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Substituting into the entropy difference expression yields
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1.6.5 Speed of Sound and Thermal Expansion.
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1.7 Perfect Gas
p = pRT, R:cp—cv, = —.

Isentropic (adiabatic, frictionless) relations for constant Cp» Cos
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Speed of sound and expansion coefficient,
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1.8  Stability of Stratified Fluid Media

We consider a fluid whose density p varies with height z. Stability
is tested by displacing a small parcel vertically and examining the
restoring buoyancy force.

1.8.1  Brunt-Viisdld (Buoyancy) Frequency. Define

dpa _dp
N (z) = ( . E)zﬂ

e N2 > 0: parcel oscillates with frequency N = stable.
e N2 =0: no restoring force = neutral.
e N? < 0: exponential growth of displacement = unstable.

Buoyancy (Acceleration)

b gPTP PP

p Po

where g is the gravitational acceleration, p is the parcel density, and
po is the ambient density. Under the ideal gas assumption,

b= Th-T  6-0
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Thus, b > 0 implies upward acceleration of lighter/warmer fluid
parcels, while b < 0 corresponds to downward acceleration of
denser/colder parcels.

1.8.2  Potential Temperature . Define 6 by adiabatically bringing a
parcel at (p(z), T(z)) to a reference pressure pg

(y-1/
T(z) =0(2) (&) ’ Y.
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Differentiating with hydrostatic balance and perfect-gas law yields

Tde dT ¢ _
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where G = dT'/dz (lapse rate) and I, = —g/c,, (adiabatic lapse rate).
Thus, stable if % > 0, neutral if % = 0, unstable if % < 0.

1.8.3  Potential Density pg. Define py by adiabatically bringing the
parcel to po
(p(z))”V _1dpy _14d6

—:>stblele<0

p(2) = po(2) el &

Oceanic Form (including compressibility). Using ¢=% = (dp/dp)s and

hydrostatic balance, a practical criterion is
dpo _dp  pg
dz dz 2
1.8.4 Scale Height of the Atmosphere. With T constant and hydro-
static balance,
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= stable if SPe < 0.
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2 Cartesian Tensors

2.1 Gradient, Divergence, and Curl

The divergence V-T of a second-order tensor T {T;;} is the vector
whose j-component is

(VT) . Cj =
i=1
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A vector field u is called solenoidal (divergence free) if V-u = 0, and
irrotational (curl free) if VX u = 0.

2.2 Gauss’ Theorem

i=

.1 1
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2.3 Stokes’ Theorem

//A(VXu)-ndA _ jiu-tds.

The right-hand side is called the circulation of u about C.

1
n-(Vxu) = lim 1 ygwtds.
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3 Kinematics
3.1 Particle and Field Descriptions of Fluid Motion

3.1.1 Lagrangian Description. Based on particle motion,
r=r(t;ro, to).
Here r( and t, are boundary/initial-condition parameters.

dr(t;ro, to) d* r(t;ro, to)
u=——"""- a=—"-+.
dt dt?
Any scalar, vector, or tensor field F may depend on the paths of the
relevant fluid particles and on time, i.e. F = F[r(t;ro, tp), t].

3.1.2  Eulerian Description. The Eulerian description focuses on
properties at locations of interest and uses the four independent
variables (x, t) (three spatial coordinates and time). Thus a field
quantity is written as F = F(x, t).

3.1.3 Relating the Two Descriptions.
Flr(t;ro,t), t] = F(x,t) when x =r(t;ro,t).
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which defines the Eulerian total material/substantial/particle deriva-
tive D/Dt. The first term, 0F /dt, is the unsteady local rate of change
at fixed x, vanishing for steady fields. The second term, u - VF, is
the advective rate of change due to motion, vanishing when F is
spatially uniform, the fluid is at rest, or u L VF.

3.2 Flow Lines, Fluid Acceleration, and Galilean
Transformation

In the Eulerian description of fluid motion, three families of curves
are commonly used: streamlines, path lines, and streak lines. Assume
the velocity field u(x, t) is known for all x and ¢ in the region of
interest. When the flow is steady, these three curves coincide. In
unsteady flows, they generally differ.

dA = //An-QdA = //V(V-Q)dv.

3.2.1 Streamlines. A streamline is a curve everywhere tangent to
the instantaneous velocity field. If ds = (dx, dy, dz) is the arc-length
element along a streamline and u = (u, v, w) is the local velocity,
the tangency requirement gives

dx
u v w’

dy dz

and equivalently u X ds = 0. If the seeds lie on a closed curve C,
the swept surface forms a stream tube. No fluid crosses its mantle
because u is everywhere tangent to it.

3.2.2  Path Lines. A path line is the trajectory of a material particle
of fixed identity. Let r(t; r, t) denote the position at time ¢ of the
particle that was at r( at the reference time #,. The path line satisfies

dr

- = t;ro, o), 1),
di u(r(t;ro, to), t)

3.2.3 Streak Lines. A streak line at time ¢ through a fixed point x,
is the locus of all particles that have passed or will pass through x,.
Equivalently, r(; xo, tp) = x with the condition r(to; x0, ty) = xo.

r(t(); ro, t()) =ry.

3.2.4 Material Acceleration and Galilean Invariance. The Eulerian
field form of the material acceleration is

Du _ ou + (u-V)u,

Dt ot
where the first term is the unsteady local acceleration and the sec-
ond is the advective acceleration. The advective term is nonlinear
(quadratic in u) and vanishes if u = 0 or if u is spatially uniform.

Consider two Cartesian frames with parallel axes. A stationary

frame Oxyz and a frame O’x’y’z’ translating with constant velocity
U relative to Oxyz. If u and u’ are the velocities observed in the two
frames at corresponding locations and times, then

’

u(x,t) = U+d'(x',t"), x=x'+Ut+x; t=t.

Under this Galilean transformation, the material acceleration
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3.3 Strain and Rotation Rates

DF(x, t Kinematically, the relative motion between neighboring points can
Dt Be decomposed into parts due to local deformation and rotation. Let

u(x, t) be the velocity at point O with position x, and let u + du be
the velocity at a nearby point P at x + dx.
ou;
dui =— dx j-
ox j
The velocity gradient tensor decomposes uniquely into symmetric
(strain-rate) and antisymmetric (rotation) parts.
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Here S;; governs fluid-element deformation and is the quantity that
couples to stress in the equations of motion, whereas R;; represents
rigid-body-like local rotation.



3.3.1 Volumetric Strain Rate. For a small control volume dV =
dxy dxz dx3 carried with the fluid,
8u2 8u3 8u1-

8u1
_ - — = _+_:_:S.,’
dV Dt( V) dx Dt( *i) = oxy  oxz  ox;

which is V - u and is independent of coordinate orientation.

3.3.2  Shear Strain Rates. The average rate at which two material
line segments initially parallel to x; and x; rotate toward or away
from each other is

1D(a+p) 1(6ui N duj

> " Dr ):Sij (i #J),
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where « is angle by which the line initially parallel to x; rotates

toward x; and f is angle by which the line initially parallel to x;
rotates toward x;.

3.3.3 Rotation Tensor, Vorticity, and Irrotationality. The tensor R;;
corresponds to the vorticity vector @ =V X u via
0 —w3 w2
Rij = _gijk W = | W3 0 -1 .
) w1 0
Fluid motion is irrotational if
ou;  Juj
w=0 — Rij:—l——]:(),
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in which case u can be represented as u = V¢.

3.3.4 Circulation. The circulation I measures the net rotation con-
tent within a closed curve C.

Ejéu-ds://Aw-ndA.

4 Conservation Laws
4.1 Conservation of Mass

Let V(t) denote a material volume—the volume occupied by a spe-
cific collection of fluid particles. Such a volume moves and deforms
with the flow so that it always contains the same mass elements.
Consequently, the material surface A(¢) bounding V(t) moves ev-
erywhere with the local fluid velocity u.

7
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Using the Reynolds transport theorem,

op(x,t
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This expresses the balance between the integrated density change
within V' (¢) and the integrated flux through its surface A(t). Apply-
ing Gauss’ divergence theorem,

ap(x,t
/ [M N
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yielding the continuity equation

api;, ) +V-(p(x,t)u(x1)) =

1 Dp(x,t)
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For constant-density flow, and more generally, for incompressible
flow,
Dp ap
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V-u = 0.

4.2 Conservation of Momentum

d

—/ p(x,t)u(x,t)de/ p(x,t)ga'V+/ f(n,x,t)dA.
dt Jv ) V(t) A()

Using the Reynolds transport theorem,

/ —(pu) dv + / pu (u-n) dA=/ png+/ f(n,x, t)dA.
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For an arbitrarily moving control volume V*(¢) with boundary A*(t)
and control-surface velocity f(x,t), start from the RTT form

d
—(pu) dV / udV—/ u (f-n)dA,
/V*m TR o b

and choose V*(t) instantaneously coincident with V (¢) so that,

i/ pu dV+/ pu [(u—ﬁ)n] dA :/ g dV+/ fdA.
dt V*(t) A*(¢) V*(t) A* (1)

Choosing f = u recovers the material-volume form.

4.2.1 Body and Surface Forces. Body forces act without contact. A
conservative body force admits a potential ® s.t.

g=-Vo

Surface forces act through contact and are expressed via the Cauchy
stress tensor T = [T;;]. The traction (force per unit area) is

fi =T

4.2.2 Differential Form (Cauchy Momentum Equation).

d
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4.3 Constitutive Equation for a Newtonian Fluid

The stress at a point is specified by the nine components of the stress
tensor T;;, where the first index denotes the outward normal direc-
tion of the surface and the second index the direction in which the
stress acts. The diagonal components Ty, Ty, T35 are normal stresses
and the off-diagonal components are shear stresses. Considering
the rotational dynamics of an infinitesimal fluid element shows that
the stress tensor is symmetric,

Tij =T,
so there are only six independent components. A constitutive equa-
tionrelates stress and deformation. In a fluid at rest, stress is isotropic.
Tij = =p dij.

When the fluid moves, additional viscous stresses o;; appear, both
normal and shear.

Tij =-p 51']' + Oij.
Galilean invariance requires oj; to depend on velocity gradients.
Moreover, only shape change generates stress, so only the symmetric
part of the velocity gradient.

0ij = Kijmn Smns
where Kjjmy, is a fourth-order tensor that may depend on the local
thermodynamic state. In an isotropic medium Kj;,, must be an
isotropic tensor, which has the form
Kijmn = A(Sijémn + yéimchn + Y(Sincsjmv
Symmetry of ¢;; implies Kj jmn is symmetric in (i, j), which forces
Yy =4
Thus,
(rij=2,u5ij+/15mm5,-j, SmmEV'll.
Tij =-p 51'1' + 2/1 Sij + Asmm 5ij~
Taking the trace,
Ti=-3p+ (2p + 32) Spum-

Define the mean / mechanical pressure as

p=—-3Tu

so that
p—p= (§p+A)V~u.
For compressible flow, the difference p — p relates to dilatation via
the bulk viscosity
Hp = A+ %,Ll

The Stokes assumption, A + % 4 =0, is often adequate when y;, or
the dilatation rate is small. Without invoking Stokes’ assumption,

Tij = —p5,-j + 05 = —pcsij + Z[J(Sij - %Smm&-j) + Up Smm 51']'.
This linear relation reproduces ¢ = p(du/dy) for simple shear.
Fluids are called Newtonian.
Non-Newtonian Behavior.

Power-Law Fluids. For a unidirectional shear u = (u;(x3),0,0),
8u1

P=5t
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with n = 1 Newtonian behavior, n < 1 (shear-thinning) and n > 1
(shear-thickening) common in polymeric and particulate systems.

Memory/Viscoelasticity. Linear viscoelastic responses can be writ-
ten with a tensorial relaxation modulus Kjj,,(t —t') as

t
0i(t) = / Kijmn(t = 1) Smn(t') dt’.

(S
Normal-Stress Differences in Shear. Even in simple shear, one may
observe nonzero Ty, — T»; (first normal-stress difference) and Toy — T33
(second normal-stress difference).

4.4 Navier-Stokes Momentum Equation

The momentum conservation equation for a Newtonian fluid

du; du; ap a duj  Ju; 2\ [ um
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When temperature differences within the flow are small,
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and, for incompressible flow, the vector form

Du
— =pg- Vp+uVu
Pp;=P9 prp
For incompressible flow, the net viscous force per unit volume
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where §;; is the strain-rate tensor and w = V X u is the vorticity.

Although rigid-body rotation does not appear in the Newtonian

stress, spatial derivatives of the vorticity determine the viscous force.

When viscous effects are negligible, e.g., many exterior flows away

from solid boundaries, Euler equation

Du
— = - Vp.
th Py P

4.5 Special Forms of the Equations

4.5.1 Angular Momentum Principle for a Stationary Control Volume.
In solid mechanics one has

d—H =M, HE/ (rx pu)dv,
dt V(t)

where M is the torque of external forces about a chosen axis, r is the
position vector from that axis, and u is the velocity field. Applying
the Reynolds transport theorem and specializing to a stationary
control volume with fixed surface A, and volume V, gives

2 /V (rxpu) dV+ /A (rxpu) (un) dA = / (txpg) dV+ / (exf) dA.

4.5.2  Bernoulli Equations. Consider inviscid flow with gravity as
the only body force. The Euler equations are

ou; ou;j 10 0P

—]+ui—] = L A —, ®=gz.

ot ox; p ox; x;j

If the flow is barotropic, p = p(p), then
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Using the vector identity
2
(u-V)u = —uxw + V(|2| ), w=Vxu,
2 P dp’
v lul® + / p/ +
2 Po p(p")
Steady Barotropic Inviscid Flow. If 9/dt = 0, then

2 P dr
VB = uXw, Bzﬁ+‘/ L/+gz,
2 Po p(p")

du
at

gz] = uXw.

so constant-B surfaces contain both streamlines and vortex lines,
and along streamlines and vortex lines

> [P dp’
- + () + gz = constant.
Po

If the flow is also irrotational (w = 0), then B is spatially uniform.

Unsteady Irrotational Barotropic Case. Let u = V¢. Then,

2 P dp’
¢ + - | 1% + / p, + gz = constant.
Po p(p")

Bernoulli From the Energy Equation. For steady, inviscid, adiabatic
flow with conservative body force and continuity used,

E] ul?
puim—le+ == | = puigi -
l
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which reduces to the streamline form

2
h+ % + gz = constant along streamlines,

P

h=e+ —.
p

Viscous, Constant-p, Irrotational Case. Starting from the incom-

pressible NS equation and V-u =0 and w =0,

2
th pg—Vp—pV(V-u) = p— +V(p| i +p92+p)

which, integrated along a streamline between points 1 and 2, gives

2 2
/ ou -ds + (ﬁ+gz+£) (l ul +gz+p) .
1 ot 2 P/,

Pl
Equivalently, with u = V¢,
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4.5.3 Neglect of Gravity in Constant-Density Flows. Let ps and ps
denote hydrostatic pressure and density satisfying 0 = p;g — Vp;.

Du

Po; =P BV +pViu p=p-p, pi=p-ps

For constant-density flow (p” = 0),

Du
— = —-Vp + uVu.
P o P+ pVou

4.5.4 The Boussinesq Approximation. For low-Mach flows with
small temperature-induced density variations and constant trans-
port properties, one approximates the continuity equation by in-
compressibility V- u = 0 and retains density variations only where
multiplied by gravity.

Du P 1 u

— =T g —Vp +vwWh, v=L, px—pa(T-Tp),

Dt Po & Po b Po
with thermal expansion coefficient @ and reference state (po, Tp)-
For the energy balance,

De

P = -p(V-u) + pe - V-q,

and, using p = pRT, ¢, — ¢, = R, and a« = 1/T for a perfect gas,
the compressional heating term — p V- u converts the left-hand side
to a ¢p-form. Neglecting viscous heating pe under Boussinesq scal-
ings and using Fourier’s law with constant k gives the temperature

equation

DT DT

pep— =-V-q > — = kV?T, k= —

Dt Dt PCp
Boussinesq Set. With g = —ge, and p = po[1 — a(T — Tp)],

D 1 DT
Vousz0 —o=-—Vp +ag(T-Ty)e, + W, — =xVT.

Dt Po Dt

5 Compressible Flow

Compressible flows exhibit several nonintuitive phenomena com-
pared with incompressible flows. Shock waves (near-discontinuities)
may appear. An increase (or decrease) in area may accelerate (or
decelerate) a uniform stream. Friction may increase a flow’s speed.
Heat addition may lower a flow’s temperature. The importance of
compressibility is characterized by the Mach number

U

M= —,

c
where U is a representative speed and c is the speed of sound, defined
thermodynamically by ¢? = (g—ﬁ) . Under isentropic conditions,

N

the nondimensionalized continuity equation can be written as

Vau = — M Po 2 b= bo
p | Dt\ poU? |~

In engineering practice, flows with M < 0.3 are typically treated as
incompressible. It shows O(10%) deviations from perfectly incom-
pressible behavior when the remaining factors are order unity.

(1) Incompressible. M = 0. Density does not vary with pressure
in the flow field. A gas may be treated as constant-density.

(2) Subsonic. 0 < M < 1. No shock waves appear.

(3) Transonic. 0.8 < M < 1.2. Shock waves may appear. Analy-
sis is difficult due to inherent nonlinearity and strong invis-
cid/viscous coupling.

(4) Supersonic. M > 1. Shock waves are generally present. In
some respects, analysis is easier since information propagates
along characteristics whose directions can be determined.

(5) Hypersonic. M > 3. Very high speeds with friction or shocks
can raise temperatures enough for molecular dissociation and
other chemical effects.



5.1 Acoustics

Acoustics treats small, isentropic fluctuations of velocity, pressure,

and density about steady reference values, providing the small-disturbance

limit of compressible flow.

5.1.1 Governing Equations with Acoustic Sources.

1 Dp + ou;

p Dt ox;

Du; 1 o 1 doj;j
_]+__p= j+__l]+f}',
Dt = pox; p ox;

where q(x, t) is a per-volume volume source, fj(x, t) is a per-mass
body-force source, and g; is the steady body force. In typical acoustic
propagation, viscous stresses are negligible unless the frequency is
very high or the propagation distance is very long.

5.1.2  Isentropic Thermodynamic Relation. For isentropic fluctua-
tions following a fluid particle,

Dp (%) Do _ Dp_.Dp
ap), Dt Dt Dt’

Dt
5.1.3  Convected Wave Equation and Source Types. Neglecting vis-
cosity for propagation and taking g; uniform yields the convected
wave operator acting on p with explicit acoustic sources.

sl 50) = i) 50

Dt p_cZE p oxj| Dt oxj
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The right-hand side represents, respectively, monopole (volume
injection/expansion), dipole (divergence of fluctuating body force),
and quadrupole (self-interaction of the flow) source terms. One may
group them as a single scalar source g.

Bu,- 8uj

Dt an an ax,- )

5.1.4 Linearization About a Uniform State. Decompose fields into

steady means and small fluctuations,

w=U+uj, p=po+p’, p=po+p, T=Th+T,

and, for small isentropic variations,
’
f=c%p ‘&:—p2 <1
Po  poc

With Uj, po, po, To uniform and time-invariant, the linearized, source-
free pressure field satisfies

1(a a)z,_ o*p’

c2\ ot ox; 9x; Ox;
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5.1.5 Classical Wave Equation and Velocity—Pressure Relation. For
a stationary medium (U; = 0), the classical wave equation
1 32 p/ 32 p/
c ot ox;ox;

The linearized momentum equation relates acoustic velocity and
pressure.

w1 gp 1 [ ap
Ty 2Py u}(x,t):——/idt.
ot Po ax]' Po axj

5.1.6  One-Dimensional Solutions. For one-dimensional disturbances
p’(x,t) in a quiescent fluid, the solution is the d’Alembert form

p'(x,t) = f(x —ct) + g(x + ct),

and the accompanying particle velocity along x is

' (x,t) = % [f(x—ct)—g(x+ct)],

With a uniform mean flow U in the +x direction, the linear pressure
solution becomes

P(xt)=f(lx=(c+U)t) + glx+ (c-U)t),

so downstream-propagating waves convect at ¢ + U and upstream-
propagating waves at ¢ — U. When U > ¢ (supersonic), both travel
downstream, altering causal influence.

5.1.7  On Weakly and Finitely Nonlinear Waves. The sound speed
in an ideal gas depends on temperature, ¢ = W . Because y > 1,
compressions (p” > 0) locally increase T and c, tending to steepen as
they propagate, while expansions (p” < 0) decrease T and c, tending
to spread. At sufficiently large amplitudes, compression waves form
shocks and are no longer isentropic. They travel faster than linear
acoustic waves in a still fluid.

6 Vorticity Dynamics

The vorticity @ = V X u is a vector field equal to twice the local
angular velocity of a fluid particle. A localized concentration of
nearly codirectional vorticity is called a vortex. Flows with circular
or nearly circular streamlines are termed vortex motions.

A vortex line is everywhere tangent to the local vorticity vector,
analogous to a streamline for the velocity field. If @ = (wx, 0y, ©2),
an element ds = (dx, dy, dz) of a vortex line satisfies

dx dy dz
wx_wy_wz'

Vortex lines do not exist in irrotational regions, just as streamlines
do not exist in a fluid at rest. All vortex lines passing through a
closed curve form a vortex tube. Its strength is the circulation T
evaluated on any circuit that links the tube once. Using V - w =0
and Gauss’ theorem over a volume V bounded by a section of a tube,

/deV:/ (D'ndA:rupper_rlower:Os
14 ov

so vortex tubes cannot begin or end within the fluid. They may end
on a boundary or form closed loops.

Solid-Body Rotation. In solid-body rotation S;; = 0, so the Newtonian
viscous stress reduces and Cauchy’s equation reduces to Euler’s
equation. With gravity —ge, and u, = 0,uy = %wr, Euler’s equations

u?

Up _ 9p ap

=—=, 0=—-=—pg,
r ar 0z P9

whose integrals are consistent with

pwzrz

8
Thus, constant-pressure surfaces are paraboloids of revolution. Be-
cause the flow is rotational, the Bernoulli function B = %ug +gz+p/p
is not constant from one streamline to another.

p(r,z) —po = - pgz.



Irrotational Line Vortex. For ug = T'/(2xr), fluid elements deform
and the shear 7,9 # 0. However, the net viscous force on a fluid
element vanishes for r > 0, so Euler’s equations yield

p(7,2) = Poo === —P9%

so constant-pressure surfaces are two-sheeted hyperboloids. Here
the Bernoulli relation holds between any two points (steady, incom-
pressible, irrotational flow).
Rotating Cylinder (Rankine Vortex). A solid cylinder of radius a
rotating at constant angular rate Q/2 in a viscous fluid produces
the steady field

% Qr, r<a

up(r) = § Qa?

=
which is the Rankine vortex with core size a and circulation I' =
wa?Q. Viscous stresses and dissipation are present. The mechanical
work at the cylinder wall balances dissipation. The net viscous force
at a point is zero in the steady state. By angular momentum balance,
the applied torque is transmitted to arbitrarily large radii. In general,
viscosity is a primary agent for generating and diffusing vorticity.

r=>a,

6.1 Kelvin’s and Helmholtz’s Theorems

Helmbholtz (1858) established several results on vortex motion in
inviscid fluids. A decade later, Kelvin introduced the circulation.
Kelvin’s Theorem. In an inviscid, barotropic flow subject to conser-
vative body forces, the circulation around a closed curve that moves
with the fluid remains constant in time when observed from a nonro-
tating/inertial frame. Equivalently,

Dr

Dt
where D/Dt is the material derivative taken following the fluid
elements that constitute the closed, material contour C used to

define the circulation T'.
Proof.

}( s dx; —‘7{ _dxz ‘%ui B(dxi)~
Dt "Dt

Using the momentum equation in component form,

Du;  1dp L1 180,,

+
Dt pax, gt p ox;’

aoij
f%dx,_}{ dp-}{dqu}{l L g
p 9x;

where @ is the body-force potential (g; = —®/dx;). For a barotropic
fluid, p = p(p), and along a closed contour the first two integrals
vanish because p, p, and @ are single-valued.

D D D
Utdu= = (x+dx) = — + = (dx) = du=—(dx;),
Dt Dt Dt

Dt

D - - Ly =
‘iui E(dxi) —iu, du; —jid(zu,ul) =0,

again because C is closed and u is single-valued. So,

DT _‘75 1 doij
Dt~ Jop ox;

Thus, Kelvin’s Theorem holds for inviscid flow (¢ = 0) or whenever
the integrated viscous term vanishes.
Implications for vorticity generation.

(1) Nonzero net viscous torques, typical near solid boundaries
under no-slip, where shear generates vorticity.

(2) Nonbarotropic effects (baroclinicity), where p depends on
variables beyond p (e.g., temperature or composition), pro-
ducing misaligned Vp and Vp and a net torque.

(3) Nonconservative body forces (e.g., Coriolis acceleration in a
rotating frame, often coupled with vortex stretching).

Restrictions for irrotational flow to remain irrotational.

(1) No net viscous forces act along C (e.g., C does not enter bound-
ary layers).

(2) The flow is barotropic (e.g., isentropic, isothermal, or constant-
density homogeneous flow).

(3) Body forces are conservative, act through the particle center
of mass and produce no net torque.

(4) The reference frame is inertial, no extra apparent-force terms
from rotation/acceleration.

Helmbholtz’s Vortex Theorems (under the same restrictions).

(1) Vortex lines move with the fluid.

(2) The strength/circulation of a vortex tube is constant along its
length.

(3) A vortex tube cannot end in the interior of the fluid. It must
terminate at a boundary or form a closed loop (vortex ring).

(4) The strength of a vortex tube remains constant in time.

6.2 Vorticity Equation in an Inertial Frame of Reference
We derive the vorticity equation for a barotropic fluid of constant
density p and constant viscosity v, in an inertial frame. Vorticity is

w = VXxu sothat V-w=0.

Taking the curl of the momentum equation

D 1
2 e _CVp+g+ Vi,
Dt P

and for a conservative body force g = V® we have V X Vp = 0 and
Vxg=0,gives

VX((;_UHu V)u) =vVx Vi = vV¥(Vxu) = vV

Using the vector identity
VX[(u-V)u] =(u-V)o-(0-V)u (withV-u=0),

we obtain

1]
a—“t’+(u.V)w=(w-V)u+vV2w,

in material-derivative form,

Dw

= (0 - Vu+vVe
Dt

The diffusion term vV2w represents viscous diffusion of vorticity,
while (@ - V)u is the stretching/tilting of vortex lines. Pressure and
conservative body forces do not appear because they exert no net
torque on a fluid element. They act through its center of mass.



6.3 Velocity Induced by a Vortex Filament. Law of
Biot-Savart

For a variety of applications in aero- and hydrodynamics, one often

needs the flow induced by a concentrated distribution of vorticity (a

vortex) of arbitrary orientation. Consider incompressible flow with

V-u = 0. Taking the curl of the vorticity gives

Vxw=Vx(Vxu)=V(V-u) - Vu=-Vy,

so u satisfies a vector Poisson equation whose solution (the vorticity-
induced part of the velocity) is

1 1
u(x,t) = —— / —— (V' xo((X, 1)) d*)
ar Jyr |x — x|

1 w(x',t 1 x—-x
=—— V' x o, &Ix + — / w(x',t) x ——— d°%/,
4 Sy |x — x| 4 Sy [x —x’?

where V' encloses the vorticity of interest and V’ acts on x’. If V’
is chosen to capture a local segment of the vortex with end faces
normal to w and lateral surface outside the vorticity support,

1
u(x,t) = a/ w(x' t) X
V/

For a slender vortex element of length dI and cross-sectional area
AA’, and for observation points sufficiently far that (x—x’) /|x—x'|?
is effectively uniform over the cross-section,
rdi . x—x
—ox ——,

|x —x'|3

7
—-X 37

|x —x'|3

du(x,t) ~

where T = fA @& dA” is the vortex strength (circulation) and & is
the unit vector along the local vorticity direction. Integrating along
a slender filament gives the Biot-Savart law for vortex-induced

velocity.
r . x—-x
u(x, t) = —/ (X)X ——— = dl
47 Jyortex |X —-X |

6.4 Vorticity Equation in a Rotating Frame of Reference

The vorticity equation derived in an inertial frame for a uniform-
density, uniform-viscosity fluid can be generalized to a steadily
rotating frame and to variable density while retaining incompress-
ible flow. This form is relevant to rotating machinery as well as
large-scale oceanic and atmospheric motions where Earth’s rota-
tion must be included when conserving momentum.

For an incompressible, variable-density flow observed in a frame
rotating with constant angular velocity Q, the continuity and mo-
mentum equations are

6ul— _

8xi v
ou; ou; 19 u;
—l+uj—l+2€,~ijjuk=———p+g,-+v : s
ot x;j p ox; 9x;j0x;

where g is the effective gravity, including centrifugal effects. The
advective and viscous terms can be rewritten to

e wor + 2 (tuu)
fax,- ijk “j ax; 2 J%j)>
o%u; o)
v == VéEijk S
anan 8xj

and the Coriolis term may be written as
2¢ik Qjur = — 2 €5k u; Q.

The momentum equation becomes

dui 9 4 1 adp dw
— + —(Guju; +®) —giruj(wr +2Q) =—— — iik —
ot ax; (Z jYj ) ijk j( k k) ox; ijk axj
Taking the Curl, apply &,4; 9/0x4,
dw, _ u o, 1 dp 9 F o
n=—n(wj+ZQj)—Uj—n+—2€nqi—p—p+V—n
ot X ax; p 0xq 0X; 0x;j0X;

In vector form,

De = (@+2Q)-Vu+ i2Vp><Vp+vV2a)
Dt p

which is the variable-density, incompressible vorticity equation in a
frame rotating with constant Q. Here u is the velocity and w = Vxu
is the vorticity measured in the rotating frame. The quantity 2Q is
the planetary vorticity, and w, = @ + 2Q is the absolute vorticity.
The three right-hand-side terms represent (i) vortex stretching/tilting,
(ii) baroclinic generation of vorticity (vanishes for barotropic flows
with p = p(p) s.t. Vp || Vp), and (iii) viscous diffusion of vorticity.
Introduce the natural orthonormal triad (e, e, ;) aligned with
the local vorticity direction es, arc length s along a vortex line. Then,

ou
(- V)u=(w-e;9/ds)u=0—,
0s
so that the s—component governs stretching of vortex lines, whereas
the n— and m—components describe tilting.
Dows  dus Dwn,  duy Dwm _ Oupm

Dt os’ Dt os’ Dt ds

In strictly two—dimensional flows, (e - V)u = 0.
If Q = Q e, and we isolate the rotation-induced production, then

Dw, __ ow Doy __ du Duwy o
Dt "oz Dt “Toz Dt oz
showing that vertical stretching of fluid columns tends to create
vertical relative vorticity.
Kelvin’s Theorem with Planetary Vorticity. Inviscid circulation fol-
lowing a material loop in a rotating frame is conserved for the
absolute vorticity.

DI,
-0, T, = //(w+ZQ)-ndA =T+ 2/]!2~ndA.
Dt A A

7 ldeal Flow

When a constant-density fluid flows without rotation and pressure
is measured relative to the local hydrostatic value, the equations of
motion in an inertial frame becomes

D
V-u=0, pD_ltl =-Vp.

> 5

These are the equations of ideal flow. Here, the characteristic size
L and speed U are such that the Reynolds number Re = pUL/p is
large, typically Re > 103, confining the influence of viscosity and
fluid-element rotation to thin surface boundary layers.



7.1 Two-Dimensional Stream Function and Velocity

Potential

The two-dimensional incompressible continuity equation
ou v

ox @

is identically satisfied when the (u, v) velocity components are de-
termined from a single scalar function .

_ Ay
"oy’ Toox’

The function ¥/ (x, y) is the stream function in two dimensions. Along
a curve of constant i, dy = 0, which implies
9 1% d
0:d¢:—lpdx+—l//dy:—vdx+udy, - Y
ox ay d

x =const

- 7

u

which is the definition of a streamline in two dimensions. The vor-
ticity w, in a flow described by 1 is

sl ali) o
A ay \ oy

In constant-density irrotational flow, w, is zero everywhere except
at the locations of ideal irrotational vortices. Thus we are interested
in solutions of

Vi =0,

du  du

ox dy

Vzlj/ =-Td&(x—x0)5(y — o),

where § is the Dirac delta function and xo = (o, yo) is the location of
an ideal irrotational vortex of strength I'. In an unbounded domain,
the most elementary nontrivial solutions are

Yy=-Vx+Uy, ¢=- % Inv(x — x0)2 + (y — y0)2,
corresponding, respectively, to uniform velocity with horizontal
component U and vertical component V, and to the flow induced
by an irrotational vortex located at xo.

An equivalent formulation of two-dimensional ideal flow results
when irrotationality is enforced first.

v 3u_

ox dy

>

and it is identically satisfied when u, v are obtained from a single
scalar function ¢:

op _ 9

5, 0= a—y

The function ¢(x,y) is the velocity potential in two dimensions
because it implies V¢ = u. Curves of ¢ = const satisfy

a¢ a

gdx+£dy=udx+vdy, =

u

dy

0=dg = 2

¢$=const

and are perpendicular to streamlines. Using ¢ (x, y), the condition
for incompressibility becomes

_9(% ¢
ol afa) e

where q(x,y) is the spatial distribution of source strength in the
flow field. In real incompressible flows, ¢ = 0. However, ideal point

du
— + —_—
Jox dy

sources and sinks are useful idealizations. They are the ¢-field coun-
terparts of positive- and negative-circulation ideal vortices in /-
fields. Thus we are interested in solutions of

Vi =0, V2§ =qs8(x—x0)5(y — yo),

where g5 (units of length?/time) sets the strength of the singularity
at x9. In an unbounded domain, the most elementary solutions are

¢— ln\/(x x0)* + (y = yo)

corresponding, respectively, to uniform flow with components (U, V)
and to the flow induced by an ideal point source of strength g; lo-
cated at x;. Here g; is the source’s volume flow rate per unit length
perpendicular to the plane of the flow.

Conservation of mass requires the normal component of fluid ve-
locity to equal the boundary’s normal velocity, n-Us; = n-u on
the surface, where n is the outward normal and Uy is the surface
velocity. For a stationary body this reduces to

o
on

p=Ux+Vy,

=0

=0,
os

surface surface

where s is arc length along the surface and n the surface-normal
coordinate. Because 9i//ds = 0 along a streamline, a stationary solid
boundary in an ideal flow is itself a streamline. Hence, replacing any
ideal-flow streamline by a stationary solid boundary of the same
shape leaves the rest of the flow unchanged.

The pressure is then obtained from conservation of momentum via
a Bernoulli equation.

1 1 1 1
prsp |uf® =ptsp (u®+0%) =ptsp |Vg|* =ptsp |Vy|* = const.

Planar polar coordinates.

1 10

- _(" ur) + = Ho =0 (continuity),

r r 90
1 17

- —( 0) — & =0 (irrotationality),
r a0

and
ap 1y 1 9¢ Y
U =—=-—, Up=-_—=——.
" or r a0 0= 90 or

7.2 Construction of Elementary Flows in Two Dimensions
Quadratic functions of elementary flows in x and y are

Y =2Axy or ¢ =2Axy,

=A@ -y or =A@ -y,

where A is a constant. Curves of

r
V= ey In v/x?% + y? = const
/4
are circles centered at the origin.
r y T r x r

U=—— =———sinf, o= —— cos 6.
21 x? + y? 2nr 2nr

T
Equivalently, u, = 0 and ug = I'/(27r), i.e. the ideal irrotational
vortex. Similarly, curves of

¢ = ln Vx? + y? = const



are circles centered on the origin.

9qs X qs
u=— =
2 x> +y*  2m;r

_ Y Y gs

sin 6.

Equivalently, u, = q5/(27r) and ug = 0, which is radial flow away
from the origin. Here, V-u is zero everywhere except at r = 0. Thus,
this potential represents flow from an ideal incompressible point
source (g5 > 0) or sink (gs < 0) located at r = 0 in two dimensions.

A source of strength +¢s at (—¢, 0) and a sink of strength —g; at
(+¢,0) can be combined to obtain the potential for a doublet in the
limit ¢ — 0 and g5 — oo such that the dipole strength vector

d= Z XiQsi = —€€x (s t+ fex(_qs) = —2qscex
sources

remains constant (pointing from sink toward source). Using r? =
x? + y? and expanding the logarithms,

_d-x _|ld|| cos®
2mr2

gs€ X
—_) —_—— =
9 T r?

2 r

Source + uniform stream (half-body).

¢ =Ux+ ;]—Sln\/x2 +y?2 =Urcosf + g—slnr,
y y

Yy =Uy+ ﬁtan_l(g) =Ursing+ Lo
27 x 27
qs X 4 Y

=U+ — , =— .

“ 2m x% + 12 27 x% + 12

The stagnation point is at x = a = ¢s/(27U), y = 0, and the stag-
nation streamline has ¥ = gs/2. The stagnation streamlines form a
semi-infinite half-body. The half-width & of the body is

N G
6—0 2U

h=_k
27U

(r—0),

hmax
The pressure coefficient on the surface is

_ 2
¢ =Bt - ‘@~

Uniform stream + doublet (circular cylinder without circulation).
Superpose a horizontal free stream U with a doublet of strength
d=2xUd’e,.

2
gi'>=Ux+Ua2 =Ur+a—0039,
x% +y? r
2
) ay .
1//:Uy—Uazx2+y2 :U(r— 7)sm9.

The streamline ¥ = 0 corresponds to r = a for all 6, i.e. a circular
cylinder of radius a. The velocity field is

2 2

U, = U(l — a—z)cos 0, wug= —U(l + a—z)sinO.
r r

Onr =a,u = 0and ug =
r 0
pressure coefficient is

—2U sin @, so the cylinder-surface

Cp(r=a0) =1 — 4sin% 4.

There are stagnation points at (r, 8) = (a,0) and (a, ). The fore-aft
symmetry of C, implies no net pressure drag (d’Alembert’s paradox).

Adding circulation (lift on a cylinder). Add a point vortex of circu-
lation —T at the origin.

2
Y= U(r - aT)sinG + % ln(g).

The tangential velocity in the field is ug = —U(1 + a?/r?) sin 6 —
T'/(2rr), so at the surface,
. r
ug(r =a,0) =—-2Usinf — —.
2ra
Stagnation points on the surface satisfy
T
4malU’

For T < 4maU, there are two surface stagnation points that move
with increasing I" and coalesce at I' = 47aU. For larger T', a stagna-
tion point appears off the surface along the negative y-axis at

r=— (r £ V2= (aral)?),

4nU

with the physically relevant root » > a. The surface pressure from
Bernoulli with pe, + % pU? as the constant is

sinf = —

o 1|, , r\°
p(r=a0) =peo+ 5P U —(2Usm9+ 27m) ]

The vertical force per unit span (lift) obtained by integrating pres-
sure around the surface is

L = pUT,
the Kutta—Zhukhovsky lift theorem.

Method of images (walls). Superposition also allows boundaries
to be built in via images. If the unbounded-domain solution satisfies
V2 = —w;1(x,7), then

V2 = w1 (x,y) + o1 (x, ~y)

yields the solution for the same vorticity distribution with a solid
wall along the x-axis, with

Vo =1 (% y) — i (x, —y),

so that the zero streamline y» = 0 lies on y = 0. Similarly, if V2¢; =
q1(x,y) in an unbounded domain, then

Vi = qi(x.y) + qi(x.—y), ¢z = pi(x.y) + $1(x, —y),

enforces v = dg,/dy =0 ony = 0.

7.3 Complex Potential

Using complex variables, the velocity potential ¢ and stream func-
tion ¥ introduced in the previous sections can be combined into a
single complex function w(z), called the complex potential.

w(z) =¢(x,y) +iY(xy), z=x+iy= ret?.

The complex function w(z) is assumed to be analytic, so that
its derivative dw/dz exists and has the same value regardless of
the direction of approach in the complex z-plane. This analyticity
requirement leads to the Cauchy-Riemann equations.

% _W % __ ¥

ax Yy’ Iy ax’



If ¢ is interpreted as the velocity potential and ¢ as the stream
function, then w is the complex potential of the flow. In this setting,
the complex velocity is given by

dw
dz

Consider first the complex potential corresponding to flow near a
corner. For a corner of angle a = 7/n, a suitable complex potential

=u—iv.

w(z) = AZ" :A(reig)" =Ar"(cos né + isinn@), n> %

where A is a real constant. For n = 2, the streamlines {y = J{w} =
Ar?sin? 0 describe flow in a region bounded by two perpendicular
walls. Extending the field into the second quadrant of the z-plane
shows that n = 2 also represents flow impinging on a flat wall. The
streamlines and equipotential lines are rectangular hyperbolas, and
the flow includes a stagnation point, so this configuration is called
a stagnation flow. For n = 1/2, the streamline pattern corresponds
instead to flow past a semi-infinite plate.

(;—Z =nAz"' =
so that dw/dz = 0 at z = 0 for & < 7, whereas dw/dz — 0 atz =0
when a > 7. Thus, the origin is a stagnation point if the corner
angle is less than 180°, and a point of unbounded velocity if the
angle exceeds 180°. In either case it is a singular point of the flow.

The complex potential for an irrotational vortex of circulation
(strength) T located at (xo, yo) is

AT (n-a)/a,

i’ T T
=——In(z - =—0y—i— Inry,
w(z) o n(z zo) 5 0 12” nry

where zy = xo + iy is the complex coordinate of the vortex center,

N S Y T R tan-l(—y ).

X —Xo

The complex potential for a source or sink of volumetric flow
rate per unit depth g, located at (xo, yo) is

_9s _,y =2 i 4
w(z)—zﬂln(z zo) 2ﬂlnr0+12n90.

The complex potential for a two-dimensional doublet (dipole)
with strength d aligned with the x-axis and located at (xo, yo) is

d

W& = e

7.4 Forces on a Two-Dimensional Body

Blasius Theorem. Consider a stationary object of this type with
extent B perpendicular to the plane of the flow, and let D (drag) be
the streamwise (x) force component and L (lift) be the cross-stream
or lateral (y) force (per unit depth) exerted on the object by the
surrounding fluid. Thus, from Newton’s third law, the total force
applied to the fluid by the object is

F:B(Dex+Ley).

For steady, irrotational, constant-density flow, conservation of mo-
mentum within a stationary control volume implies

/pu(u-n)dAz—/ pndA+F.
A* A*

If the control surface A* is chosen to coincide with the body surface
and the body is not moving, then u - n = 0, so

1
Deyx+Le, = _E/ pndA.
e

If C is the contour of the body’s cross section, then dA = Bds
where ds = e, dx + e, dy is an elemental vector along C and |ds| =

[(dx)? + (dy)?] .

exdy—e,dx
- |ds]

1 B|ds|
Dex+Ley=—E£p(exdy—eydx)W

=—‘7§pdyex+fpdxey.

c c

D—iL:—%pdy—ij{pdx:—i%p(dx—idy):—ijgpdz*,
c c c c

The pressure is found from the Bernoulli equation,
1 2 1 2, 2 1 ; ;
Poo + EPU :p+§p(u +0°) :p+5p(u—w)(u+w),

where po, and U are the pressure and horizontal flow speed far from
the body.

D—iL = —i‘;lg[pw + lpU2 - lp (u —iv)(u + io)]dz*.
- 2 2

The integral of the constant terms p., + % pU? around a closed
contour is zero. On the body surface, the velocity vector and the
surface element dz = |dz|e'* are parallel, so

d
(u+iv)dz" = (u—iv)dz = il dz,
dz

dw\?
D—iL:iBf(—) dz,
2 ol dZ

It applies to any steady planar ideal flow.

Kutta—Zhukhovsky Lift Theorem. The Blasius theorem can be
readily applied to an arbitrary cross-section object around which
there is circulation I'. The flow can be considered as a superposi-
tion of a uniform stream and a set of singularities such as vortices,
doublets, sources, and sinks.

As there are no singularities outside the body, we shall take the
contour C in the Blasius theorem at a very large distance from the
body. From large distances, all singularities appear to be located
near the origin z = 0, so the complex potential on the contour C
will be of the form

T d
ﬁlnz+i—lnz+—+-~~,
2 21 2nz

w(z) =Uz +
where U, gs, T, and d are positive and real. The first term represents
a uniform flow in the x-direction, the second term represents a net
source of fluid, the third term represents a clockwise vortex, and
the fourth term represents a doublet. Because the body contour is

closed, there can be no net flux of fluid into the domain. Sp, ¢; = 0.



The Blasius theorem then becomes

T d 2
D—iL:iBf s — -2 1. ) dz
2 Je 2rz  2mz?
iUl 1 (Ud T?\ 1
=i[—)j§ vy S (22 ) 2 |
2 Je T oz n 4r?) Z2

o p. fiUT\
D-iL=i-2xi|— ) =-ipUI,
2 T
or

D=0, L=pUT.
Thus, there is no drag on an arbitrary-cross-section object in steady
two-dimensional, irrotational, constant-density flow, a more general
statement of d’Alembert’s paradox.

8 Gravity Waves

There are three types of waves commonly considered in the study of
fluid mechanics: interface waves, internal waves, and compression
and expansion waves. For interface waves, the restoring forces are
gravity and surface tension. For internal waves, the restoring force
is gravity. For expansion and compression waves, the restoring force
comes directly from the compressibility of the fluid. Perhaps the
simplest and most readily observed fluid waves are those that form
and travel on the density discontinuity provided by an air-water
interface. Such surface capillary—-gravity waves, sometimes simply
called water waves, involve fluid particle motions parallel and per-
pendicular to the direction of wave propagation. Thus, the waves
are neither longitudinal nor transverse. Wave amplitudes are as-
sumed small enough so that the governing equations and boundary
conditions are linear. For such linear waves, Fourier superposition of
sinusoidal waves allows arbitrary waveforms to be constructed and
sinusoidal waveforms arise naturally from the linearized equations
for water waves. Consequently, a simple sinusoidal traveling wave
of the form

n(x,t) = acos[ZTIr (x - ct)]

is a foundational element for what follows. In Cartesian coordinates
with x horizontal and z vertical, z = n(x, t) specifies the waveform
or surface shape where a is the wave amplitude, A is the wavelength,
¢ is the phase speed, and 27 (x — ct)/A is the phase. In addition,
the spatial frequency k = 2x/A, with units of rad/m, is known
as the wave number. If it describes the vertical deflection of an
air-water interface, then the height of wave crests is +a and the
depth of the wave troughs is —a compared to the undisturbed water-
surface location z = 0. At any instant in time, the distance between
successive wave crests is A. At any fixed x-location, the time between
passage of successive wave crests is the period, T = 27/ (kc) = A/c.
Thus, the wave’s cyclic frequency is v = 1/T with units of Hz, and
its radian frequency is w = 27v with units of rad/s.

n(x,t) = acos(kx - wt).

w 2mn
Xcrest = E t+ T
w
c=— = Av.
k

A useful three-dimensional generalization is

n = acos(kx + ly + mz — wt) = acos(K - x — wt),

where K = (k, [, m) is a vector, called the wave number vector, whose
magnitude K is given by
K2 =k*+ 12+ mh

21

?)
e

¢ = X €K,

where ex = K/K. And, ¢y = w/k, ¢y = w/l, and ¢; = w/m are
each larger than the resultant ¢ = w/K. Any of the three axis-
specific phase speeds is sometimes called the trace velocity along
its associated axis. If sinusoidal waves exist in a fluid moving with
uniform speed U, then the observed phase speed is ¢y = ¢ + U.

wo=w+U-K,

where wj is the observed frequency at a fixed point, and w is the
intrinsic frequency measured by an observer moving with the flow.

8.1

We develop the properties of small-slope, small-amplitude grav-
ity waves on the free surface of a constant-density liquid layer of
uniform depth H. The limitation to waves with small slopes and
amplitudes implies a/A < 1 and a/H < 1, respectively. These two
conditions allow the problem to be linearized. Surface tension is
neglected for simplicity. In addition, the air above the liquid is ig-
nored, and the liquid’s motion is presumed to be irrotational and
entirely caused by the surface waves. Because the liquid’s motion is
irrotational, we introduce a velocity potential ¢(x;, z, t) such that

99 99
= —, w=—,
ox 0z
so that the incompressible continuity equation du/dx + dw/dz =0
implies the Laplace equation

Linear Liquid-Surface Gravity Waves

>’y PP 0
o a2
There are three boundary conditions. At the bottom z = —H we
impose zero normal velocity,
w:% =0 onz=-H.
0z

At the free surface, we apply a kinematic boundary condition that
requires the fluid-particle velocity normal to the surface.

(n-u)_ =n-u,

z=n
where n is the unit normal to the free surface. This ensures that the
liquid elements that define the interface do not separate from the
interface, while still allowing motion tangential to the surface. The
free surface is given by the level set

F(x,z,t) =z—n(x,t) =0,
so the upward-pointing unit normal to the surface is
_ VF _ “Nxexte _an
and the surface velocity can be taken as purely vertical,
=

ug =1; e, = .
s =Nt €z e ot



Using u = u ey + we, gives
(VF -u),—p = VF - ug,

which becomes

7]
=’7t+’7x_¢

9¢
=m, or —
e 2=n ox

=n 2z

(—u Nx + W)
z 2=n

For small-slope waves, the last term is small compared to the other
two, so the kinematic boundary condition can be approximated by

a9 N

oz, =7
W _w e L
0z, 9z, 9z |, "

When a/A is small enough, the most simplified form of the kinematic
boundary condition is

[

0z = -

z=0

In addition to the kinematic condition, there is a dynamic condition
at the free surface. The pressure just below the surface equals the
ambient pressure, with surface tension neglected.

plz:r] =0,

where p is the gauge pressure. For consistency with the small-slope
approximation, we linearize the Bernoulli equation by dropping the
nonlinear kinetic-energy term %|V¢|2, giving

2]

—d) + P +9z =0,

at  p
where the Bernoulli constant has been evaluated on the undisturbed
surface far from the wave. Evaluating at z = n yields

o¢

+gn=0.
ot 9gn

z=n

Expanding ¢, about z = 0 and retaining the leading term gives

%

Fra

z=0

For simplicity, consider n(x,0) = acos(kx), consistent with the
sinusoidal wave
n(x,t) = acos(kx — wt).

Thus, we seek a solution of the form
P(x,z,t) = f(2) sin(kx — wt).
f"(2) = K*f(z) =0,

Hence,
d(x,z,t) = (Aekz + Be_k"‘) sin(kx — wt).
1]
—¢ = k(Ae_kH - BekH) sin(kx — wt) =0,
oz z=—H
SO
B =Ae %H,
7]
—¢ =k(A - B) sin(kx — wt) =n; = aw sin(kx — wt),
9z |,
o

k(A -B) = aw.

we—ZkH

A= _ G B= _Gwe T
- k(1 — e~2kH)’ - k(1 - e 2kH)"
h(k(z+H
o(x,z,1) = % % sin(kx — wt),
_op cosh(k(z + H)) L ,
u= = —awm cos(kx — wt),
9P sinh(k(z + H)) | ‘ ,
W—E—aa)m Sll’l( x—a)).
¢ B aw? cosh(kH) N 3
at |, = Sinh(KH) cos(kx—wt) ~ —gn = —ga cos(kx—wt),

w = +/gktanh(kH), or T = @ coth i ,
g A

where T = 27/ w is the wave period and A = 27r/k is the wavelength.
The phase speed c of the surface waves is

_e_ |9 S 7N 2
c—k— ktanh(kH)— o tanh( pl

This shows that linear gravity waves on a free surface are generally
dispersive. The phase speed depends on wavenumber, with long
waves, small k traveling faster.

Consider the time-dependent perturbation pressure

P =p+pgz
produced by the surface waves.

, ¢ aw? cosh(k(z + H))
P=-p=p o

ot k sinh(kH)
cosh(k(z + H))

cosh(kH)
Although surface gravity waves transport energy, they do not,

in linear theory, produce net transport of fluid parcels. To see this,
consider a fluid particle whose path is x, (t) = x, (t) ex + z,(t) €.

cos(kx — wt)

= pga cos(kx — wt).

d d

% = u(xp, Zp, 1), g = w(xp, Zp, t),
dxp cosh(k(zp + H)) L ,
G =9 gmnge oSk~ ot)
dz,  sinh(k(zp + H)) | L ,
W —GWW sm( XP—LO )

To be consistent with the small-amplitude approximation, we lin-
earize these equations by writing

xp(t) =x0 +x(t), zp(t) =z +2(2),

where (xo, z9) is the mean position of the particle and (x(t), z(t))
is a small excursion.
dx cosh(k(zo + H))
ar ~ " sinh(kH)
dz sinh(k(z + H))
Lm0 T )
dt sinh(kH)

cos(kxo - a)t),

sin(kxo — wt).



Integrating in time gives

cosh(k(zo + H))

x(t)~—-a b (kD) sin(kxo — wt),
inh(k(zo + H)
z(t)~a % cos(kxo — wt),

which are purely oscillatory. There is no term that grows with ¢, so
the mean position (xo, zo) is time-independent to this order.

x2 Z2

=1,
[a cosh(k(zo + H))/sinh(kH)]’ * [a sinh (k(zo + H))/sinh(kH)]?

showing that the particle moves on an ellipse. Both semi-axes de-
crease with depth, and the minor semi-axis vanishes at zo = —H.
The motion of fluid particles in any vertical column is in phase.
When one is at the top of its orbit, all particles at that x, are at the
top of their orbits.

The streamfunction ¢ can be obtained from

W _  _
% T
Y(x,z,t) = % % cos(kx — wt),

At any fixed time, the bottom z = —H corresponds to ¢ =0, and ¢
also vanishes at certain surface locations where n = 0.
The kinetic energy per unit horizontal area, Ey,

p [ 2 2
Ekzﬁ/0 /_H(u +w?) dzdx.

Ei=2pgr
k=5 P90
where ? is the mean-square surface displacement. The potential

energy per unit area, E,, is the work required to deform an initially
flat free surface into the disturbed state.

A n A 0
Ep:p—g/ / zdzdx—%‘/ / zdzdx
Ado Jom Ado Jom

A n A
P9 P9 2 1 -
= — dzdx = = dx = - 2,
ﬂ/o/ozzx ZﬂonZPg”

1 J— J—
E, = Epgryz, E =Ei +E, = pgn?.

Thus,

For a sinusoidal wave with amplitude q, F =a?/2, and

E=1pga
= — a,
5 P9

is the total wave energy per unit horizontal area. The time-averaged
energy flux Er across the plane x = 0 is the pressure work done by
fluid in x < 0 on fluid in x > 0.

) 27 /w 0 ® 21w 0
Ep=— / pudzdtz—/ / (p" — pgz) udzdt.
21 Jo -H 21 Jo -H

3 0
:pazm /H coshz(k(z+H))dz

—l az (E) 1+2k—H
T3 P9% 3 sinh(2kH) |

Deep-water waves.

c=4 [% tanh(kH).

For H/A > 1,kH > 1, tanh(kH) — 1.

- J9_ |9t
c_\/;_ 21’

Waves satisfying H > 1/3 are classified as deep-water waves. They
are strongly dispersive, since ¢ depends on A. For kH > 1,
cosh(k(z+H)) sinh(k(z+H)) .
sinh(kH)  sinh(kH) ¢~

x(t) = —ae"® sin(kxo — wt), z(t) = ae"* cos(kxy — wt),

describing circular orbits of radius ae*?, decreasing with depth. At
the surface z, = 0, the orbit radius is a.

kz

U~ awe kz

cos(kx — wt), w = awe"* sin(kx — wt).

At a fixed spatial point, the velocity vector rotates with constant
magnitude awe*? and angular frequency .

p’ = pgae®* cos(kx — wt),

Wave-induced pressure fluctuations decay exponentially with depth.
Shallow-water waves.
For H/A < 1, we use tanh(x) ~ x for small x. Then,

¢ =~ 4/gH.

Waves are classified as shallow-water waves only if their wavelength
exceeds about 14H. Shallow-water gravity waves are non-dispersive.
¢ depends on H but not on A.

cosh(k(z + H)) =~ 1, sinh(k(z + H)) ~ k(z + H), sinh(kH) = kH,

a
x(t) = — — sin(kxy — wt),
(1) = = 2 sinkn - o1
which describe thin ellipses whose minor semi-axis decreases lin-
early to zero at the bottom.

zZ(t) ~a (1 + Zﬁo) cos(kxy — wt),

aw
U cos(kx — wt),

so |w| < |u| and vertical accelerations are small.

W~ aw (1 + %) sin(kx — wt),

p’ = pgacos(kx — wt) = pgn,

which is independent of depth. The pressure field is purely hydro-
static. The departure from the undisturbed state equals the hydro-
static pressure due to the surface elevation n everywhere in the
water column. This is why shallow-water gravity waves are some-
times called hydrostatic waves.

Finally, the depth dependence of the phase speed explains the
refraction of long waves approaching coastlines or islands as the
depth H decreases. The portion of a wave entering shallower water
slows down relative to the part still in deeper water, causing the
crest lines to rotate and tend to align with depth contours such
as shorelines or circular isobaths around islands. This bending of
wave paths in a spatially varying medium is the phenomenon of
wave refraction, analogous to refraction of light in a non-uniform
refractive index field.



8.2 Standing Waves

If two waves of equal amplitude and wavelength traveling oppositely,
their superposition can produce a non-propagating pattern.

n = acos(kx — wt) + acos(kx + wt) = 2a cos(kx) cos(wt).

Atlocations where kx = +7/2, +371/2, ..., the surface displacement
1 is identically zero for all t. These fixed points of zero displacement
are called nodes. For such a motion the free surface does not carry
disturbances downstream. Instead, the surface oscillates vertically
with frequency w, and the oscillation amplitude varies in space
while the nodal points remain fixed. This type of motion is called a
standing wave.

aw sinh(k(z + H))

V=% sinh(kH) [Cos(kx - wt) = cos(kx + wt)
= ZLZTCL) % sin(kx) Sin(a)t),

Standing waves naturally arise in a confined region of water, such as
a tank, pool, or lake, when traveling waves reflect from the bound-
aries. In a lake this type of oscillation is called a seiche. Consider
an idealized rectangular tank of length L, uniform depth H, and
vertical end walls, with the waves assumed independent of y.

cosh(k(z + H))
sinh(kH)

Let the vertical walls be located at x = 0 and x = L. The no-
penetration condition at these walls requires

U =2aw sin(kx) sin(wt).

u(x=0)=0, u(x=1L)=0.

sin(kL) =0 = kL=nr, n=123,....

Hence the allowed wavelengths are

H
o= 1|2 tann| 222 , n=123....
L L

8.3  Group Velocity, Energy Flux, and Dispersion

Wavelength-dependent/dispersive propagation is common for waves
that travel on interfaces between different materials. Examples are
Rayleigh waves (vacuum and a solid), Stonely waves (a solid and an-
other material), or interface waves (two different immiscible liquids).
Here we consider only air-water interface waves and emphasize
deep-water gravity waves for which c o« VA Ina dispersive system,
the energy of a wave component does not propagate at the phase
velocity ¢ = w/k, but at the group velocity defined as ¢; = dw/dk.

n = acos(kix — wit) + acos(kax — wst)
1 1
=2a cos(EAkx - EAw t) cos(kx — wt),
where Ak =k, — k; and Aw = ws — w1, while k = (k; + k2)/2 and

w = (w1 + wy)/2. Here, cos(kx — wt) is a progressive wave with a
phase speed ¢ = w/k. However, its amplitude 2a is modulated by a

slowly varying function cos(Ak x/2 — Aw t/2), which has a large
wavelength 47 /Ak, along period 47/ Aw, and propagates at a speed
_ Ao do
%Ak T dk
where the approximate equality becomes exact in the limit as Ak and
Aw — 0. Multiplication of a rapidly varying sinusoid and a slowly
varying sinusoid, generates repeating wave groups. The individual
wave crests and troughs propagate with the speed ¢ = w/k, but
the envelope of the wave groups travels with the speed c,, which
is therefore called the group velocity. If ¢; < ¢, then individual
wave crests appear spontaneously at a nodal point, proceed forward
through the wave group, and disappear at the next nodal point. If,
on the other hand, ¢; > ¢, then individual wave crests emerge from
a forward nodal point and vanish at a backward nodal point. The
subsequent evolution of the wave is approximately described by

n = a(x — cgt) cos(kx — wt),

where ¢; = dw/dk. This shows that the amplitude of a wave packet
travels with the group speed. It follows that ¢; must equal the speed
of propagation of energy of a certain wavelength. The fact that ¢, is
the speed of energy propagation is also evident from the behavior
of modulated wave trains because the nodal points travel at c¢; and
no energy crosses nodal points since p’ = 0 there.

~ 14 2kH
=5\ 7 sinh(2kH) |
which has two limiting cases.
cg = % (deep water), ¢, =c (shallow water).

The group velocity of deep-water gravity waves is half the deep-
water phase speed while shallow-water waves are non-dispersive
with ¢ = ¢,. For a linear non-dispersive system, any waveform
preserves its shape as it travels because all the wavelengths that
make up the waveform travel at the same speed.

2kH_\_,
sinh(2kH) ) ~ ~

where E = pga? /2 is the average energy in the water column per unit
horizontal area. This signifies that the rate of transmission of energy
of a sinusoidal wave component is the wave energy times the group
velocity, and reinforces the interpretation of the group velocity
as the speed of propagation of wave energy. In three dimensions,
the dispersion relation v = w(k, £, m) may depend on all three
components of the wave number vector K = (k, £, m).

_ dw
Cgi = 8_1(,
Another way to understand the group velocity is to consider the k
or A determined by an observer traveling at speed ¢, with a slowly

varying wave train described by

c
Er=E-[1+
F 2(

n=a(x,t)cos|0(x,1)],

For a slowly varying wave train, define the local wave number
k(x, t) and the local frequency w(x, t) as the rate of change of phase
in space and time, respectively.

a0 ok ow ok ok
- = — =0 = —+cg— =0.
ot ox

a0
k(x,t) = —, w(x,t) = —+
(x.1) ox (x.1) Jat ox ot



Now consider the same traveling observer, but allow there to be
smooth variations in the water depth H(x).

w = +/gk tanh[kH(x)],

ow 0
cg— =0.
9 ox

oW
ot

8.4 Nonlinear Waves in Shallow and Deep Water

Consider a finite-amplitude surface displacement consisting of a
wave crest and trough, propagating in shallow water of undisturbed
depth H. Let a little wavelet be superposed on the crest at point
x’, at which the water depth is Hy and the fluid velocity due to the
wave motion is u(x’). Relative to an observer moving with the fluid
velocity u, the wavelet propagates at the local shallow-water speed
co = \/gﬁo . The speed of the wavelet relative to a frame of reference
fixed in the undisturbed fluid is therefore ¢ = ¢y + u. It is apparent
that the local wave speed c is no longer constant because cy(x) and
u(x) are variables. This is in contrast to the linearized theory in
which u is negligible and ¢ is constant because Hy ~ H.

Let us now examine the effect of variable phase speed on the
wave profile. The value of ¢ is larger for points near the wave crest
than for points in the wave trough. It follows that the wave speed ¢
is larger for points on the crest than for points on the trough, so that
the waveform deforms as it propagates, the crest region tending to
overtake the trough region.

The front face is rising with time, and this implies an increase in
pressure at any depth within the liquid. The net effect of nonlinear-
ity is a steepening of the compression region. For finite-amplitude
waves in a non-dispersive medium like shallow water, therefore,
there is an important distinction between compression and expan-
sion regions. A compression region tends to steepen with time, while
an expansion region tends to flatten out. This eventually would lead
to a wave shape in which there are three values of surface eleva-
tion at a point. This situation is certainly possible for time-evolving
waves and is readily observed as plunging breakers develop in the
surf zone along ocean coastlines.

To analyze a hydraulic jump, consider the flow in a shallow canal
of depth H. If the flow speed is u, we may define a dimensionless
speed via the Froude number,

The Froude number is analogous to the Mach number in compress-
ible flow. The flow is called supercritical if Fr > 1, and subcritical if
Fr < 1. For the situation where the jump is stationary, the upstream
flow is supercritical while the downstream flow is subcritical, just as
a compressible flow changes from supersonic to subsonic by going
through a shockwave. The depth of flow is greater downstream of a
hydraulic jump, just as the gas pressure is greater downstream of a
shockwave. However, dissipative processes act within shockwaves
and hydraulic jumps so that mechanical energy is converted into
thermal energy in both cases. An example of a stationary hydraulic
jump is found at the foot of a dam, where the flow almost always
reaches a supercritical state because of the free fall. A tidal bore

propagating into a river mouth is an example of a propagating hy-
draulic jump. A circular hydraulic jump can be made by directing a
vertically falling water stream onto a flat horizontal surface.

The planar hydraulic jump can be analyzed by using a rectangular
control volume, the goal being to determine how the depth ratio
depends on the upstream Froude number. Q is the volume flow
rate per unit width normal to the plane of the paper, then mass
conservation requires

Q = U1H1 = quz.

Conserving momentum with the same control volume produces

1

pQ (uz —u1) = 3

where the left-hand term comes from the outlet and inlet momentum
fluxes, and the right-hand term is the hydrostatic pressure force.

pg (Hi — Hj),

1 1 1
Q? (1?2 - 171) =39 (H} - H}).

2
H. H.
2| +F —2r? =0,
H,; H,;

5 2
0 Y

where

The physically meaningful solution is

H, 1 .
2= (14 1+ 8F2.
H 2

For supercritical flows Fr; > 1, it requires that H, > Hj, and this
verifies that water depth increases through a hydraulic jump.
Though a solution with H, < H; for Fr; < 1 is mathematically
allowed, such a solution violates the second law of thermodynam-
ics, implying an increase of mechanical energy through the jump.
Consider the mechanical energy of a fluid particle at the surface,

uZ QZ
E=—+gH=— +gH.
2 T T Y
g (Hy — Hy)?

Ey—E =—(H,-H
2= Ev=—(Hy - Hy) I,

This shows that H, < H; implies E; > E;, which violates the second
law of thermodynamics. The mechanical energy, in fact, decreases
in a hydraulic jump because of the action of viscosity.

In a non-dispersive medium, nonlinear effects may continually
accumulate until they become large changes. Such an accumulation
is prevented in a dispersive medium because the different Fourier
components propagate at different speeds and tend to separate from
each other. In a dispersive system, then, nonlinear steepening could
cancel out the dispersive spreading, resulting in finite-amplitude
waves of constant form.

In 1847 Stokes showed that periodic waves of finite amplitude are
possible in deep water. In terms of a power series in the amplitude a,
he showed that the surface deflection of irrotational waves in deep
water is given by

n= acos[k(x—ct)]+%ka2 cos[2k(x—ct)]+§k2a3 cos[3k(x—ct)]+:--,



where the speed of propagation is

c:,/%(1+k2a2+---).

Periodic finite-amplitude irrotational waves in deep water are fre-
quently called Stokes waves. They have flattened troughs and peaked
crests. The maximum possible amplitude is amay = 0.074, at which
point the crest becomes a sharp 120° angle. Attempts at generating
waves of larger amplitude result in the appearance of white foam at
these sharp crests.

When finite-amplitude waves are present, fluid particles no longer
trace closed orbits, but undergo a slow drift in the direction of wave
propagation. This is called Stokes drift. The mean velocity of a fluid
particle is therefore not zero. The drift occurs because the particle
moves forward faster when at the top of its trajectory than it does
backward when at the bottom of its trajectory.

The fluid particle trajectory x, (t) = x,(t) ex + z,(t) ez,

dx, (t) ou ou
Ld =u(xp, zp, t) = u(xo, 20, t) +x — z — s
dt X0,20 82 X0,20

dz, () w ow
Ld :w(xp,zp,t) =w(xp,20,t) + X — — +-
dt ax X0,20 az X0,20

where (xo, zo) is the fluid element location absence of wave motion.
For deep-water gravity waves, the Stokes drift speed

up = d*wk e**,

For arbitrary water depth, it may be generalized to
cosh[zk(zo + H)]
2sinh?(kH)

The Stokes drift causes mass transport in the fluid so it is also called
the mass transport velocity.

ur = a®wk

9 Laminar Flow

For low values of the Reynolds number, the entire flow may be
influenced by viscosity, and inviscid flow theory is no longer even
approximately correct. Viscous flows generically fall into two cate-
gories, laminar and turbulent, but the boundary between them is
imperfectly defined. The basic difference between the two categories
is phenomenological and was dramatically demonstrated in 1883 by
Reynolds, who injected a thin stream of dye into the flow of water
through a tube. At low flow rates, the dye stream was observed to
follow a well-defined straight path, indicating that the fluid moved
in parallel layers with no unsteady macroscopic mixing or overturn-
ing motion of the layers. Such smooth orderly flow is called laminar.
However, if the flow rate was increased beyond a certain critical
value, the dye streak broke up into irregular filaments and spread
throughout the cross-section of the tube, indicating the presence of
unsteady, apparently chaotic three-dimensional macroscopic mixing
motions. Such irregular disorderly flow is called turbulent. Reynolds
demonstrated that the transition from laminar to turbulent flow
always occurred at or near a fixed value of the ratio that bears his
name, the Reynolds number,

Ud
Re = — ~ 2000 to 3000,
v

where U is the velocity averaged over the tube’s cross-section, d
is the tube diameter, and v = pu/p is the kinematic viscosity. The
fluid’s kinematic viscosity specifies the propensity for vorticity to
diffuse through a fluid. Since v has the units of (length)?/time, the
kinematic viscosity v is sometimes called the momentum diffusivity.
The velocity boundary conditions on a solid surface are

n-ugs=n-u on the surface,

t-us =t-u on the surface,

where u; is the velocity of the surface, n is the normal to the surface,
and t is the tangent to the surface in the plane of interest. Here,
fluid density will be assumed constant, and the frame of reference
will be inertial. Thus, gravity can be dropped from the momentum
equation as long as no free surface is present.

9.1 Exact Solutions for Steady Incompressible Viscous
Flow
9.1.1 Steady Flow between Parallel Plates. Consider a viscous, in-

compressible fluid flowing between two infinite parallel plates aligned
with the x-axis. The lower plate is at y = 0 and is stationary, while
the upper plate at y = h moves in the x-direction with speed U. A
constant pressure gradient dp/dx # 0 is imposed in the streamwise
direction. We assume there is no variation in the z-direction, so that
w = 0 and 9/9z = 0. For a steady, fully developed flow,

u = (u(y), 0,0),
so that du/dx = 0. The continuity equation
ou v
—+=—=0
ox dy

then reduces to dv/dy = 0, and the boundary conditions v = 0 at
y =0and y = himply v = 0 everywhere in the channel. Under these
conditions the x- and y-momentum equations become

1 9p d?u

0=—— 2 4y—r,

p ox  dy?
__lop
p oy

Hence, p = p(x), and the pressure gradient must be a constant. The
x-momentum equation can then be written as

d>u  dp
Hﬁ =30
y?  dx

where y = pv is the dynamic viscosity.

1 dp
u(y) = dx

2
+ Ay + B,
dx y

where A and B are constants of integration. The no-slip boundary
conditions u(0) = 0 and u(h) = U determine these constants

1 d
uy =v¥- L

h—y).
A 2ydxy( y)



Depending on the sign of dp/dx, it may be concave or convex. The
volume flow rate per unit width of the channel is

h
q=/ u(y) dy
0
L dp

"y
[ ot Lo
_UR[,_# dp
U |

The average velocity across the gap, V = q/h, is therefore

1 [k U Rz dp
V== dy=—|[1- — —=|.
h,/o wyldy =7 [ 6uU dx]
A negative pressure gradient increases the flow rate, while a positive
gradient decreases it.

e Plane Couette flow. If the motion is driven solely by the
moving upper plate, so that dp/dx =0,

u(y) =U %

The shear stress is uniform across the channel,
du U
T=p— =pu—.
H &y Hy
¢ Plane Poiseuille flow. If both plates are stationary (U = 0)
and the flow is driven purely by the pressure gradient, then

1 dp
———E o h-y),
u(y) 2 dx Y (h-y)
a parabolic distribution. The corresponding shear stress is
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9.1.2  Steady Flow in a Round Tube. Next consider steady, fully
developed laminar flow through a circular tube of radius a. We
employ cylindrical coordinates (R, ¢, z) with the tube axis along z.
The only nonzero component of velocity is the axial component
u,(R), so that

u = (0, 0, uz(R)).

This automatically satisfies the continuity equation for incompress-
ible flow. From the radial and azimuthal momentum equations
one finds that the pressure does not depend on R or ¢, and hence
p = p(z) isalinear function of z. The z-momentum equation reduces

to
. 1d RduZ
dz "PRar "R )
Since dp/dz is constant, this equation can be integrated twice

with respect to R to give

1d

w(R) = — LRy AR+ B.

4u dz
To keep the velocity finite at the axis R = 0, we must set A = 0. The
no-slip condition u,(a) = 0 then yields

1 dp ,

4p az

and hence the velocity profile becomes

a parabola of maximum magnitude at the centerline R = 0.
From Appendix B, the shear stress in cylindrical coordinates is

Jugr + u,
TR=H|— .
®=M 9z TR
Here ug =0, so
_ _du, Rdp
PEER=IR T2 4z
and we obtain Rd
p
Ry =- -,
®) 2 dz
which varies linearly with radius. Its magnitude at the wall R = a is
_adp
W5 a

The volume flow rate through the tube is
Q0= / u,(R) 2rRdR
0
a p2 _ 42 d
- / K- P yrrdr
0 4 dz

_ ma* dp
T8y de’

where the minus sign arises because dp/dz < 0 for flow in the
positive z-direction. The average velocity in the tube is
Q __adp
prciaia i
As in the plane channel, the linear axial pressure variation and the

stress distribution of the laminar solution also have counterparts in
turbulent pipe flow when suitable averages are taken.

9.1.3  Steady Flow between Concentric Rotating Cylinders. As a third
example, consider viscous flow in the annular region between two
infinitely long, concentric cylinders. The inner cylinder of radius
Ry rotates with angular velocity Uy, and the outer cylinder of ra-
dius R, rotates with angular velocity U,. We again use cylindrical
coordinates (R, ¢, z) and assume the flow is purely azimuthal and
independent of ¢ and z,

u = (0, u¢(R), 0).

The continuity equation is automatically satisfied. The radial and
azimuthal momentum equations then reduce to

W2
¢ 1dp d|1d

—=—-——, 0=p—|=—=(R .

R~ pdR 3R | R ar R

The first equation states that the radial pressure gradient balances

the centrifugal acceleration; the second is the governing equation

for the tangential velocity. Integrating the azimuthal equation twice

yields

B
u¢(R) =AR+ ﬁ)

where A and B are constants. The no-slip conditions at the cylinder
surfaces,

ug(Ry) =UiRy, ug(Ry) = UsRy,



determine A and B:
L, U - UK
- R-R

B= (U, — Uy) RER]
- RZ _ R2 :
2 T
Substitution gives the general velocity distribution

RZR?
(UaR; ~ UiRD R = (U = Uy) —= |

TR-R
Two limiting cases are especially instructive:
¢ Rotating cylinder in an unbounded fluid. Let R, — o
with U, = 0, so the outer cylinder recedes to infinity and the
fluid extends without bound. Simplifying (??) gives
U R2
R

ug(R) =

which has the form of an ideal (irrotational) vortex for R > R;.

Although the flow is irrotational, viscous shear stresses are
present. In cylindrical coordinates the relevant component is

1 Jug a (U
[ ()
R¢ ”[R a6 T oR\R ]
and here ug = 0, so
U R2
TRy = 2 -

The mechanical power supplied to the fluid (per unit cylinder
length) equals the rate of viscous energy dissipation in the
flow.
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e Solid-body rotation in a cylindrical tank. Let R; — 0 and
U; = 0 so that the inner cylinder disappears, and the outer
cylinder of radius R, rotates at angular velocity U,. Then (??)
reduces to

Ugp (R) = UzR,
corresponding to solid-body rotation.

In each of the three examples of this section, the velocity field
is confined between solid boundaries, and the symmetries of the
configuration remove the convective acceleration terms from the
governing equations. Many other exact solutions of the steady in-
compressible Navier—Stokes equations (both internal and external)
exist and can be found in specialized references. Before turning to
additional examples and the entrance-region development of inter-
nal flows, we next introduce a brief treatment of classical lubrication
theory, which is another important limiting case of viscous flow in
thin geometries.
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