
Scientific Computing
DIWEN XU, University of Washington, USA

These notes are primarily based on the notes by J. Nathan Kutz.

1 Initial and Boundary Value Problems of Differential
Equations

1.1 Initial Value Problems
𝑑𝒚

𝑑𝑡
= 𝒇 (𝑡,𝒚), 𝒚(0) = 𝒚0, 𝑡 ∈ [0,𝑇] .

1.1.1 Euler Method.

𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡 𝒇 (𝑡𝑛,𝒚𝑛).

1.1.2 General One-Step Method (Runge–Kutta Family).

𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡 𝝋,

where 𝝋 is chosen to reduce the one-step error.

Second-Order 𝝋 . 𝐴𝒇 (𝑡, 𝒚(𝑡)) + 𝐵𝒇 (𝑡 + 𝑃Δ𝑡, 𝒚(𝑡) +𝑄Δ𝑡 𝒇 (𝑡, 𝒚(𝑡))) .

A Taylor expansion gives the order conditions

𝐴 + 𝐵 = 1, 𝐵𝑃 = 1
2 , 𝐵𝑄 = 1

2 ,

leaving one degree of freedom. Two common second-order 𝝋 are

Heun (A=
1
2
).
1
2
𝒇 (𝑡,𝒚(𝑡)) + 1

2
𝒇 (𝑡 + Δ𝑡, 𝒚(𝑡) + Δ𝑡 𝒇 (𝑡,𝒚(𝑡))),

Modified Euler–Cauchy (A=0). 𝒇
(
𝑡 + Δ𝑡

2
, 𝒚(𝑡) + Δ𝑡

2
𝒇 (𝑡,𝒚(𝑡))

)
.

1.1.3 Fourth-Order Runge–Kutta Method (RK4).

𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡

6
(
𝒇 1 + 2𝒇 2 + 2𝒇 3 + 𝒇 4

)
,

with

𝒇 1 = 𝒇 (𝑡𝑛,𝒚𝑛),

𝒇 2 = 𝒇

(
𝑡𝑛 + Δ𝑡

2
, 𝒚𝑛 + Δ𝑡

2
𝒇 1

)
,

𝒇 3 = 𝒇

(
𝑡𝑛 + Δ𝑡

2
, 𝒚𝑛 + Δ𝑡

2
𝒇 2

)
,

𝒇 4 = 𝒇
(
𝑡𝑛 + Δ𝑡, 𝒚𝑛 + Δ𝑡 𝒇 3

)
.

This has local truncation error 𝑂 (Δ𝑡5) and global error 𝑂 (Δ𝑡4).

1.1.4 Adams Method.

𝒚𝑛+1 = 𝒚𝑛 +
∫ 𝑡𝑛+1

𝑡𝑛

𝒇 (𝑡,𝒚) 𝑑𝑡 .

Approximating the integrand by a polynomial 𝒑(𝑡) over the step
yields multi-step formulas.

Adams–Bashforth (Explicit).

• 1st order (Euler). 𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡 𝒇𝑛 .

• 2nd order (AB2). 𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡
2

(
3𝒇𝑛 − 𝒇𝑛−1

)
.

Author’s Contact Information: Diwen Xu, rwbyaloupeep@gmail.com, University of
Washington, Seattle, Washington, USA.

Adams–Moulton (Implicit).
• 1st order (Backward Euler). 𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡 𝒇𝑛+1 .
• 2nd order (Trapezoidal). 𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡

2
(
𝒇𝑛+1 + 𝒇𝑛

)
.

Predictor–Corrector (AB2/AM2). 𝒚𝑃
𝑛+1:

Predict. 𝒚𝑃𝑛+1 = 𝒚𝑛 + Δ𝑡

2
(
3𝒇𝑛 − 𝒇𝑛−1

)
,

Correct. 𝒚𝑛+1 = 𝒚𝑛 + Δ𝑡

2
(
𝒇𝑛 + 𝒇 (𝑡𝑛+1,𝒚𝑃𝑛+1)

)
.

1.2 Error Analysis for Time-Stepping Routines
1.2.1 Accuracy and Local vs. Global Error. Let the global discretiza-
tion error at step 𝑘 be

𝐸𝑘 = 𝒚(𝑡𝑘) −𝒚𝑘 ,

and the local discretization error be

𝜀𝑘+1 = 𝒚(𝑡𝑘+1) −
(
𝒚(𝑡𝑘) + Δ𝑡 𝜙

)
,

where 𝒚(𝑡𝑘) is the exact solution, 𝒚𝑘 is the numerical solution, and
𝒚(𝑡𝑘) + Δ𝑡 𝜙 is a one-step approximation over [𝑡𝑘 , 𝑡𝑘+1].

Scheme Local error 𝜀𝑘 Global error 𝐸𝑘
Euler (Forward) O(Δ𝑡2) O(Δ𝑡)
2nd-order Runge–Kutta O(Δ𝑡3) O(Δ𝑡2)
4th-order Runge–Kutta O(Δ𝑡5) O(Δ𝑡4)
2nd-order Adams–Bashforth O(Δ𝑡3) O(Δ𝑡2)

1.2.2 Round-Off and Optimal Step-Size. A floating-point represen-
tation introduces round-off. For the Euler derivative approximation

𝑑𝒚

𝑑𝑡
≈
𝒚𝑛+1 −𝒚𝑛

Δ𝑡
+ 𝜀 (𝒚𝑛,Δ𝑡),

where 𝜀 (𝒚𝑛,Δ𝑡) measures the truncation error. Assume computed
values satisfy 𝒚𝑛+1 = 𝒀𝑛+1 + 𝒆𝑛+1 with round-off 𝒆𝑛+1. Then,

𝑑𝒚

𝑑𝑡
=

𝒀𝑛+1 − 𝒀𝑛
Δ𝑡

+ 𝐸𝑛 (𝒚𝑛,Δ𝑡),

with a combined error (round-off + truncation)

𝐸𝑛 =
𝒆𝑛+1 − 𝒆𝑛

Δ𝑡
+ 𝜀 (𝒚𝑛,Δ𝑡) =

𝒆𝑛+1 − 𝒆𝑛
Δ𝑡

− Δ𝑡

2
𝑑2𝒚(𝑐)
𝑑𝑡2

.

Assuming |𝒆𝑛+1 | ≤ 𝑒𝑟 , | − 𝒆𝑛 | ≤ 𝑒𝑟 , and

𝑀 = max
𝑐∈[𝑡𝑛,𝑡𝑛+1]

����𝑑2𝒚(𝑐)𝑑𝑡2

���� ,
we bound

|𝐸𝑛 | ≤
2𝑒𝑟
Δ𝑡

+ Δ𝑡

2
𝑀.

Minimizing w.r.t. Δ𝑡 ,

𝜕 |𝐸𝑛 |
𝜕(Δ𝑡) = − 2𝑒𝑟

Δ𝑡2
+ 𝑀

2
= 0 =⇒ Δ𝑡 =

(
4𝑒𝑟
𝑀

)1/2
.

Hence, the smallest Δ𝑡 is not necessarily best. An optimal step
balances round-off and truncation.

, , .

https://orcid.org/0009-0001-8574-8944
https://orcid.org/0009-0001-8574-8944

1.2.3 Stability. Consider

𝑑𝑦

𝑑𝑡
= 𝜆𝑦, 𝑦 (0) = 𝑦0 .

Forward Euler gives

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡 𝜆𝑦𝑛 = (1 + 𝜆Δ𝑡) 𝑦𝑛,

so after 𝑁 steps

𝑦𝑁 = (1 + 𝜆Δ𝑡)𝑁𝑦0 .

With round-off 𝑒 in the initial value, the propagated error is

𝐸 = (1 + 𝜆Δ𝑡)𝑁 𝑒.

For 𝜆 > 0, the solution 𝑦𝑁 → ∞. So although the error also grows,
it may not be significant in comparison to the size of the numerical
solution. For 𝜆 < 0, stability requires |1 + 𝜆Δ𝑡 | < 1 ⇒ Δ𝑡 < −2/𝜆.
A one-step linear recursion 𝑦𝑛+1 = 𝐴𝑦𝑛 satisfies after 𝑁 steps

𝑦𝑁 = 𝐴𝑁𝑦0 = 𝑆Λ𝑁 𝑆−1𝑦0,

so stability is governed by eigenvalues {𝜆𝑖 (𝐴)}. Instability arises if
|𝜆𝑖 | > 1 for any 𝑖 .
AB2. 𝜌 (𝜉) − 𝑧 𝜎 (𝜉) = 0, 𝜌 (𝜉) = 𝜉2 − 𝜉, 𝜎 (𝜉) = 3

2 𝜉 −
1
2 . The

absolute stability region is the set of 𝑧 ∈ C for which all roots 𝜉 of
𝜌 (𝜉) −𝑧𝜎 (𝜉) = 0 satisfy |𝜉 | ≤ 1 and any unit-modulus root is simple.
Its boundary is given by the parametric curve

𝑧 (𝜃) = 𝜌 (𝑒𝑖𝜃)
𝜎 (𝑒𝑖𝜃)

=
𝑒2𝑖𝜃 − 𝑒𝑖𝜃

3
2𝑒

𝑖𝜃 − 1
2
, 𝜃 ∈ [0, 2𝜋] .

For a general linear multistep method (LMM)

𝑘∑︁
𝑗=0

𝛼 𝑗𝑦𝑛+𝑗 = ℎ

𝑘∑︁
𝑗=0

𝛽 𝑗 𝑓𝑛+𝑗 ,

Consistency.

𝑘∑︁
𝑗=0

𝛼 𝑗 = 0, (𝑦 (𝑡) = 1)
𝑘∑︁
𝑗=0

𝑗𝛼 𝑗 =

𝑘∑︁
𝑗=0

𝛽 𝑗 . (𝑦 (𝑡) = 𝑡)

This ensures the local truncation error 𝑂 (ℎ𝑝+1).
Zero-stability. Let 𝜌 (𝜉) = ∑𝑘

𝑗=0 𝛼 𝑗 𝜉
𝑗 be the characteristic polyno-

mial. The method is zero-stable if all roots satisfy |𝜉 | ≤ 1, and any
root with |𝜉 | = 1 is simple. This guarantees that perturbations do
not grow faster than 𝑂 (1) as 𝑛 → ∞.
Convergence theorem (Dahlquist). A linear multistep method is

convergent of order 𝑝 iff it is consistent of order 𝑝 and zero-stable.

1.3 Advanced Time-Stepping Algorithms
1.3.1 Adaptive Time-Stepping Algorithm.

(1) Start with a default step Δ𝑡0.
(2) Advance one step of size Δ𝑡 to get 𝑓1 (𝑡 + Δ𝑡).
(3) Halve the step to Δ𝑡/2 and take two substeps to get 𝑓2 (𝑡 +Δ𝑡).
(4) Compare 𝐸 = ∥ 𝑓1 − 𝑓2∥.
(5) If 𝐸 > tolerance, halve again until tolerance is met.
(6) If 𝐸 < tolerance, try doubling to 2Δ𝑡 , until the condition fails.

1.3.2 Exponential Time-Steppers. Consider
𝑑y
𝑑𝑡

= 𝑐 y + 𝐹 (y, 𝑡), |𝑐 | ≫ 1.

𝑑

𝑑𝑡

(
𝑦𝑒−𝑐𝑡

)
= 𝐹 (𝑦, 𝑡)𝑒−𝑐𝑡 .

𝑦 (𝑡 + Δ𝑡) = 𝑦 (𝑡)𝑒𝑐Δ𝑡 + 𝑒𝑐Δ𝑡
∫ Δ𝑡

0
𝐹
(
𝑦 (𝑡 + 𝜏), 𝑡 + 𝜏

)
𝑒−𝑐𝜏 𝑑𝜏 .

(i) First-Order. Assume 𝐹 (𝑦 (𝑡 + 𝜏), 𝑡 + 𝜏) ≈ 𝐹 (𝑦 (𝑡), 𝑡) = 𝐹𝑛 . Then,

𝑦𝑛+1 = 𝑦𝑛𝑒
𝑐Δ𝑡 + 𝐹𝑛

𝑒𝑐Δ𝑡 − 1
𝑐

.

(ii) Two-Step.

𝐹 ≈ 𝐹𝑛 + 𝜏 𝐹𝑛 − 𝐹𝑛−1
Δ𝑡

+ O(Δ𝑡2),

𝑦𝑛+1 = 𝑦𝑛𝑒
𝑐Δ𝑡 + 𝐹𝑛

(1 + 𝑐Δ𝑡)𝑒𝑐Δ𝑡 − 1 − 2𝑐Δ𝑡
𝑐2Δ𝑡

+ 𝐹𝑛−1
1 + 𝑐Δ𝑡 − 𝑒𝑐Δ𝑡

𝑐2Δ𝑡
.

As 𝑐 → 0, it reduces to the second-order Adams–Bashforth scheme.

(iii) Exponential RK4 (Cox–Matthews). Define coefficient functions

𝐴(𝑐Δ𝑡) =
−4 − 𝑐Δ𝑡 + 𝑒𝑐Δ𝑡

(
4 − 3𝑐Δ𝑡 + (𝑐Δ𝑡)2

)
𝑐3Δ𝑡2

,

𝐵(𝑐Δ𝑡) =
2
(
2 + 𝑐Δ𝑡 + 𝑒𝑐Δ𝑡 (−2 + 𝑐Δ𝑡)

)
𝑐3Δ𝑡2

,

𝐶 (𝑐Δ𝑡) = −4 − 3𝑐Δ𝑡 − (𝑐Δ𝑡)2 + 𝑒𝑐Δ𝑡 (4 − 𝑐Δ𝑡)
𝑐3Δ𝑡2

.

𝑦𝑛+1 = 𝑒𝑐Δ𝑡𝑦𝑛+𝐴𝐹 (𝑦𝑛, 𝑡𝑛)+𝐵
[
𝐹 (𝑎𝑛, 𝑡𝑛+Δ𝑡

2)+𝐹 (𝑏𝑛, 𝑡𝑛+Δ𝑡
2)

]
+𝐶𝐹 (𝑐𝑛, 𝑡𝑛+Δ𝑡),

with the stages

𝑎𝑛 = 𝑦𝑛𝑒
𝑐Δ𝑡/2 + 𝑒𝑐Δ𝑡/2 − 1

𝑐
𝐹 (𝑦𝑛, 𝑡𝑛),

𝑏𝑛 = 𝑦𝑛𝑒
𝑐Δ𝑡/2 + 𝑒𝑐Δ𝑡/2 − 1

𝑐
𝐹 (𝑎𝑛, 𝑡𝑛 + Δ𝑡

2),

𝑐𝑛 = 𝑎𝑛𝑒
𝑐Δ𝑡/2 + 𝑒𝑐Δ𝑡/2 − 1

𝑐

(
2𝐹 (𝑏𝑛, 𝑡𝑛 + Δ𝑡

2) − 𝐹 (𝑦𝑛, 𝑡𝑛)
)
.

1.4 Boundary Value Problems
1.4.1 The Shooting Method. Consider the second–order boundary
value problem

𝑑2𝑦

𝑑𝑡2
= 𝑓

(
𝑡, 𝑦,

𝑑𝑦

𝑑𝑡

)
, 𝑡 ∈ [𝑎, 𝑏],

with general boundary conditions

𝛼1 𝑦 (𝑎) + 𝛽1 𝑦
′ (𝑎) = 𝛾1,

𝛼2 𝑦 (𝑏) + 𝛽2 𝑦
′ (𝑏) = 𝛾2 .

(1) Choose a time–stepping scheme for IVP and a value 𝐴. Set
𝑦 (𝑎) = 𝛼 , 𝑦′ (𝑎) = 𝐴, and integrate to 𝑡 = 𝑏 to obtain 𝑦𝐴 (𝑏).

(2) Form the residual 𝑟 (𝐴) = 𝑦𝐴 (𝑏) − 𝛽 .
(3) Update 𝐴 using a one–dimensional root–finder until |𝑟 (𝐴) |

is below the desired tolerance.
(4) The converged forward trajectory is the numerical BVP solu-

tion. Its accuracy reflects both the root–finder tolerance and
the underlying time discretization.

2

In practice, bracketing methods like bisection are robust when two
initial guesses produce undershoot/overshoot at 𝑡 = 𝑏, whereas
secant/Newton methods converge faster when a good initial guess.

Sturm–Liouville Theory. Let (𝑎, 𝑏) ⊂ R. A regular Sturm–Liouville
problem seeks nontrivial solutions 𝑦 and parameters 𝜆 ∈ R to

L𝑦 ≡ − 𝑑

𝑑𝑥

(
𝑝 (𝑥) 𝑦′ (𝑥)

)
+ 𝑞(𝑥) 𝑦 (𝑥) = 𝜆𝑤 (𝑥) 𝑦 (𝑥), 𝑥 ∈ (𝑎, 𝑏)

subject to separated boundary conditions

𝛼1𝑦 (𝑎) + 𝛼2𝑝 (𝑎)𝑦′ (𝑎) = 0, 𝛽1𝑦 (𝑏) + 𝛽2𝑝 (𝑏)𝑦′ (𝑏) = 0,

where

𝑝 ∈ 𝐶1 [𝑎, 𝑏], 𝑞,𝑤 ∈ 𝐶 [𝑎, 𝑏], 𝑝 (𝑥) > 0, 𝑤 (𝑥) > 0 on [𝑎, 𝑏] .
Here 𝑝 is the diffusion coefficient, 𝑞 the potential, and𝑤 the weight.
Spectral properties

(1) All eigenvalues are real and ordered 𝜆1 < 𝜆2 < · · · → +∞.

(2) Each eigenvalue is simple, i.e. any eigenfunction is unique up
to a scalar multiple.

(3) Eigenfunctions corresponding to distinct eigenvalues are or-
thogonal in 𝐿2𝑤 (𝑎, 𝑏), i.e. ⟨𝑦𝑚, 𝑦𝑛⟩𝑤 = 0 (𝑚 ≠ 𝑛) .

Eigenvalues and Eigenfunctions on an Infinite Domain. Consider

𝜓 ′′
𝑛 +

(
𝑛(𝑥) − 𝛽𝑛

)
𝜓𝑛 = 0, 𝑥 ∈ R,

with decay conditions𝜓𝑛 (𝑥) → 0 as 𝑥 → ±∞. Let

𝑛(𝑥) = 𝑛0

{
1 − |𝑥 |2, 0 ≤ |𝑥 | ≤ 1,
0, |𝑥 | > 1,

where 𝑛0 > 0 is a constant. When 𝛽𝑛 ≥ 0,

𝑥 = +𝐿. 𝜓 ′
𝑛 (𝐿) +

√︁
𝛽𝑛𝜓𝑛 (𝐿) = 0,

𝑥 = −𝐿. 𝜓 ′
𝑛 (−𝐿) −

√︁
𝛽𝑛𝜓𝑛 (−𝐿) = 0,

on a truncated computational interval [−𝐿, 𝐿] with 𝐿 ≫ 1. So,

𝑑

𝑑𝑥

(
𝑥1
𝑥2

)
=

(
0 1

𝛽𝑛 − 𝑛(𝑥) 0

) (
𝑥1
𝑥2

)
,

with boundary conditions

𝑥2 (𝐿) = −
√︁
𝛽𝑛 𝑥1 (𝐿), 𝑥2 (−𝐿) =

√︁
𝛽𝑛 𝑥1 (−𝐿).

• an outer FOR loop over the number of eigenvalues to find,
• an inner FOR loop that iterates on 𝛽𝑛 via bracketing/bisection
until the boundary condition residual satisfies a tolerance,

• an IF block that checks convergence of the boundary residual
and decides whether to accept the current 𝛽𝑛 ,

• an additional loop may be used for amplitude normalization
so that eigenfunctions have unit norm.

1.4.2 The Relaxation Method.

𝑑2𝑦

𝑑𝑡2
= 𝑝 (𝑡) 𝑑𝑦

𝑑𝑡
+ 𝑞(𝑡) 𝑦 + 𝑟 (𝑡), 𝑡 ∈ [𝑎, 𝑏],

with Dirichlet conditions 𝑦 (𝑎) = 𝛼, 𝑦 (𝑏) = 𝛽.

𝑦 (𝑡 + Δ𝑡) − 2𝑦 (𝑡) + 𝑦 (𝑡 − Δ𝑡)
Δ𝑡2

= 𝑝 (𝑡) 𝑦 (𝑡 + Δ𝑡) − 𝑦 (𝑡 − Δ𝑡)
2Δ𝑡

+ ...[
1− Δ𝑡

2 𝑝 (𝑡)
]
𝑦𝑛+1−

[
2+Δ𝑡2𝑞(𝑡)

]
𝑦𝑛 +

[
1+ Δ𝑡

2 𝑝 (𝑡)
]
𝑦𝑛−1 = Δ𝑡2 𝑟 (𝑡) .

Imposing 𝑦 (𝑡0) = 𝑦 (𝑎) = 𝛼 and 𝑦 (𝑡𝑁) = 𝑦 (𝑏) = 𝛽 , the unknowns
are the interior values x = [𝑦 (𝑡1), . . . , 𝑦 (𝑡𝑁−1)]T. The resulting
linear system 𝐴x = b has tridiagonal coefficient matrix

𝐴 =


2 + Δ𝑡2𝑞(𝑡1) −1 + Δ𝑡

2 𝑝 (𝑡1)
−1 − Δ𝑡

2 𝑝 (𝑡2) 2 + Δ𝑡2𝑞(𝑡2) −1 + Δ𝑡
2 𝑝 (𝑡2)

. . .
. . .

. . .

 ,
and right-hand side

b =



−Δ𝑡2𝑟 (𝑡1) +
(
1 + Δ𝑡

2 𝑝 (𝑡1)
)
𝛼

−Δ𝑡2𝑟 (𝑡2)
.
.
.

−Δ𝑡2𝑟 (𝑡𝑁−2)
−Δ𝑡2𝑟 (𝑡𝑁−1) +

(
1 − Δ𝑡

2 𝑝 (𝑡𝑁−1)
)
𝛽


.

For the general nonlinear case,

𝑦 (𝑡 + Δ𝑡) − 2𝑦 (𝑡) + 𝑦 (𝑡 − Δ𝑡)
Δ𝑡2

= 𝑓

(
𝑡, 𝑦 (𝑡), 𝑦 (𝑡 + Δ𝑡) − 𝑦 (𝑡 − Δ𝑡)

2Δ𝑡

)
.

2𝑦1 − 𝑦2 − 𝛼 + Δ𝑡2 𝑓
(
𝑡1, 𝑦1,

𝑦2−𝛼
2Δ𝑡

)
= 0,

−𝑦 𝑗−1 +2𝑦 𝑗 −𝑦 𝑗+1 +Δ𝑡2 𝑓
(
𝑡 𝑗 , 𝑦 𝑗 ,

𝑦 𝑗+1−𝑦 𝑗−1
2Δ𝑡

)
= 0, 𝑗 = 2, . . . , 𝑁 −2,

−𝑦𝑁−2 + 2𝑦𝑁−1 − 𝛽 + Δ𝑡2 𝑓
(
𝑡𝑁−1, 𝑦𝑁−1,

𝛽−𝑦𝑁 −2
2Δ𝑡

)
= 0.

Such systems can be challenging. Existence/uniqueness is not guar-
anteed, and robust solution typically requires a relaxation method
such as Newton’s method or a secant method tailored to the discrete
residuals.

1.4.3 The Collocation Method.

Formulation. We seek an approximate solution 𝑦𝑁 (𝑥) in the form

𝑦𝑁 (𝑥) =
𝑁∑︁
𝑗=1

𝑐 𝑗𝜙 𝑗 (𝑥),

where {𝜙 𝑗 (𝑥)} are chosen basis functions satisfying the boundary
conditions, and {𝑐 𝑗 } are unknown coefficients.

Collocation Points. We select 𝑁 − 2 distinct points 𝑥1, . . . , 𝑥𝑁−2 ∈
(𝑎, 𝑏), called collocation points, and impose that the approximate
solution satisfies the differential equation at these points.

𝑦′′𝑁 (𝑥𝑖) = 𝑓
(
𝑥𝑖 , 𝑦𝑁 (𝑥𝑖), 𝑦′𝑁 (𝑥𝑖)

)
, 𝑖 = 1, 2, . . . , 𝑁 − 2.

Together with the boundary conditions at 𝑎 and 𝑏, we obtain a
system of 𝑁 equations for the 𝑁 unknown coefficients 𝑐 𝑗 .

Choice of Basis and Points. Polynomial basis functions, such as La-
grange or Hermite polynomials. Collocation points chosen as evenly
spaced or as special quadrature nodes, such as Gauss–Lobatto or
Chebyshev points. These choices affect both accuracy and numerical
stability.

Resulting System. Substituting 𝑦𝑁 (𝑥) and its derivatives into the
differential equation leads to a nonlinear algebraic system for {𝑐 𝑗 }.
If the problem is linear, this system is linear in {𝑐 𝑗 }. Otherwise, it
may be solved iteratively such as Newton’s method.

3

1.4.4 Linear Operators and Computing Spectra.

𝜕𝑢

𝜕𝑡
= N

(
𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
, . . .

)
,

where N may have nonconstant coefficients in 𝑥 and is in general
nonlinear in𝑢 (𝑥, 𝑡) and its derivatives. We assume solutions exist by
Cauchy–Kovalevskaya, with boundary conditions on either a finite
or infinite domain. We focus on equilibrium (steady) solutions where
𝜕𝑢/𝜕𝑡 = 0. Thus there exists a time-independent𝑈 (𝑥) satisfying

N
(
𝑥, 𝑈 ,

𝜕𝑈

𝜕𝑥
,
𝜕2𝑈

𝜕𝑥2
, . . .

)
= 0.

To form the linear stability problem, linearize about𝑈 .

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥) + 𝜀 𝑣 (𝑥, 𝑡), 0 < 𝜀 ≪ 1.

If 𝑣 (𝑥, 𝑡) → ∞ as 𝑡 → ∞ the equilibrium is unstable. If 𝑣 (𝑥, 𝑡) → 0 it
is asymptotically stable. And if 𝑣 (𝑥, 𝑡) = O(1) it is Lyapunov stable.

𝜕𝑣

𝜕𝑡
= L[𝑈 (𝑥)] 𝑣 + O(𝜀),

where L[𝑈] is the linearized operator about 𝑈 . Seeking modal
solutions 𝑣 (𝑥, 𝑡) = 𝑤 (𝑥)𝑒𝜆𝑡 gives the spectral / eigenvalue problem

L[𝑈 (𝑥)]𝑤 = 𝜆𝑤.

Stability is determined by the spectrum. The equilibrium is unstable
if anyℜ{𝜆} > 0. It is stable if ℜ{𝜆} ≤ 0, asymptotic stable if < 0.

First derivative, Dirichlet 𝑣 (𝑎) = 𝑣 (𝑏) = 0. Unknowns are 𝑣 (𝑥 𝑗)
for 𝑗 = 1, . . . , 𝑁 . The centered 𝑂 (Δ𝑥2) first-derivative matrix is

𝜕

𝜕𝑥

����
Dirichlet

⇒ 𝐴1 =
1

2Δ𝑥


0 1 0 · · · 0

−1 0 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

0 · · · 0 −1 0


.

First derivative, Neumann 𝑣 ′ (𝑎) = 𝑣 ′ (𝑏) = 0. Using one-sided
second-order formulas at the boundaries, the ghost values are

𝑣0 =
4
3𝑣1 −

1
3𝑣2, 𝑣𝑁+1 =

4
3𝑣𝑁 − 1

3𝑣𝑁−1,

𝑑𝑣

𝑑𝑥

����
𝑥1

=
𝑣2 − 𝑣0
2Δ𝑥

=

4
3 (𝑣2 − 𝑣1)

2Δ𝑥
.

𝜕

𝜕𝑥

����
𝑣′ (𝑎)=𝑣′ (𝑏)=0

⇒ 𝐴2 =
1

2Δ𝑥


− 4
3

4
3 0 · · · 0

−1 0 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

0 · · · 0 − 4
3

4
3


.

First derivative, periodic 𝑣 (𝑎) = 𝑣 (𝑏). Unknowns are 𝑣0, . . . , 𝑣𝑁
with 𝑣0 = 𝑣𝑁+1. The centered matrix is

𝜕

𝜕𝑥

����
periodic

⇒ 𝐴3 =
1

2Δ𝑥


0 1 0 · · · −1

−1 0 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

1 · · · 0 −1 0


.

Second derivative, Dirichlet 𝑣 (𝑎) = 𝑣 (𝑏) = 0.

𝜕2

𝜕𝑥2

����
Dirichlet

⇒ 𝐵1 =
1

Δ𝑥2


−2 1 0 · · · 0

1 −2 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

0 · · · 0 1 −2


.

Second derivative, Neumann 𝑣 ′ (𝑎) = 𝑣 ′ (𝑏) = 0.

𝜕2

𝜕𝑥2

����
𝑣′ (𝑎)=𝑣′ (𝑏)=0

⇒ 𝐵2 =
1

Δ𝑥2


− 2
3

2
3 0 · · · 0

1 −2 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

0 · · · 0 2
3 − 2

3


.

Second derivative, periodic 𝑣 (𝑎) = 𝑣 (𝑏).

𝜕2

𝜕𝑥2

����
periodic

⇒ 𝐵3 =
1

Δ𝑥2


−2 1 0 · · · 1

1 −2 1
. . .

.

.

.

.

.

.
. . .

. . .
. . . 1

1 · · · 0 1 −2


.

1.5 Neural Networks for Time Stepping
Regard a time–stepper as a flow map that takes the state at time 𝑡
directly to the state at time 𝑡 +Δ𝑡 . Neural networks can be trained to
learn such a flow map from data. Let 𝑓𝜃 (·) denote a neural network
with trainable parameters 𝜃 . Given state trajectories, one can train
𝑓𝜃 so that it approximates the one–step map

𝑌 = 𝑓𝜃 (𝑋) =⇒ 𝑦𝑛+1 = 𝑓𝜃 (𝑦𝑛),

by minimizing a time–stepping error over pairs of consecutive states
(𝑦𝑛, 𝑦𝑛+1). In effect, the network learns the action of the right–hand
side of the ODE through its induced discrete flow.

2 Finite Difference Schemes for PDEs

2.1 Fast Poisson Solvers: The Fourier Transform
Consider solving the streamfunction equation

∇2𝜓 = 𝜔.

A direct discretize-then-solve approach typically costs O(𝑁 2) op-
erations at best. Iterative schemes may outperform this in practice,
but without guarantees. An alternative is the fast Fourier trans-
form (FFT), which leverages periodic transforms on a finite interval
𝑥 ∈ [−𝐿, 𝐿] to obtain near-linear operation counts.
On the infinite line, the Fourier transform and its inverse are defined
by

F {𝑓 }(𝑘) = 𝑓 (𝑘) = 1
√
2𝜋

∫ ∞

−∞
𝑒−𝑖𝑘𝑥 𝑓 (𝑥) 𝑑𝑥,

𝑓 (𝑥) = 1
√
2𝜋

∫ ∞

−∞
𝑒𝑖𝑘𝑥 𝑓 (𝑘) 𝑑𝑘.

In computation we restrict to 𝑥 ∈ [−𝐿, 𝐿] and assume periodic
boundary conditions because the kernel 𝑒±𝑖𝑘𝑥 is oscillatory. A con-
tinuous eigenfunction expansion in 𝑘 becomes a discrete sum on
the finite domain.

4

The key property enabling FFT-based PDE solvers is the transform
rule for derivatives. Assuming 𝑓 (𝑥) → 0 as 𝑥 → ±∞,

F {𝑓 (𝑛) (𝑥)}(𝑘) = (𝑖𝑘)𝑛 𝑓 (𝑘).
This diagonalizes constant-coefficient differential operators in Fourier
space and is central to efficiency and simplicity of spectral methods.
The Cooley–Tukey FFT (mid-1960s) reduces the cost of discrete
Fourier transforms to O(𝑁 log𝑁). In two dimensions,

𝜕2𝜓

𝜕𝑥2
+ 𝜕2𝜓

𝜕𝑦2
= 𝜔.

Denote the Fourier transform in 𝑥 by a hat (ˆ) and in 𝑦 by a tilde
(˜). Transforming in 𝑥 gives

−𝑘2𝑥 𝜓 + 𝜕2𝜓

𝜕𝑦2
= 𝜔̂,

and transforming subsequently in 𝑦 yields

−𝑘2𝑥
˜̂
𝜓 − 𝑘2𝑦

˜̂
𝜓 = ˜̂𝜔.

Hence,
˜̂
𝜓 (𝑘𝑥 , 𝑘𝑦) = −

˜̂𝜔 (𝑘𝑥 , 𝑘𝑦)
𝑘2𝑥 + 𝑘2𝑦

.

The solution𝜓 (𝑥,𝑦) is obtained by inverse transforming in 𝑦 and 𝑥 .

2.2 Fast Fourier Transform: FFT, IFFT, FFTSHIFT,
IFFTSHIFT

Given a function which has been discretized with 2𝑛 points and
represented by a vector 𝑥 , the FFT is found with the command
fft(x). Aside from transforming the function, the algorithm asso-
ciated with the FFT does three major things. It shifts the data so
that 𝑥 ∈ [0, 𝐿] → [−𝐿, 0] and 𝑥 ∈ [−𝐿, 0] → [0, 𝐿], additionally it
multiplies every other mode by −1, and it assumes you are working
on a 2𝜋-periodic domain.
By using the command fftshift, we can shift the transformed

function back to its mathematically correct positions. However,
before inverting the transformation, it is crucial that the transform is
shifted back. The command ifftshift does this. In general, unless
you need to plot the spectrum, it is better not to deal with the
fftshift and ifftshift commands.
For transforming in higher dimensions, a couple of choices in

python are possible. For 2D transformations, it is recommended to
use the commands fft2 and ifft2. These will transform a matrix
𝐴, which represents data in the 𝑥- and 𝑦-directions, respectively,
along the rows and then columns. For higher dimensions, the fft
command can be modified to fft(x,[],N) where 𝑁 is the number
of dimensions.

2.3 Sparse Matrices: SPDIAGS, SPY
Under discretization, most physical problems yield sparse matrices,
i.e. matrices which are largely composed of zeros. The spdiags com-
mand allows for the construction of sparse matrices in a relatively
simple fashion. The sparse matrix is then saved using a minimal
amount of memory and all matrix operations are conducted as usual.
The spy command allows you to look at the nonzero components
of the matrix structure.

2.4 Iterative Methods: BICGSTAB, GMRES
The bi-conjugate stabilized gradient method (bicgstab) and the
generalized minimum residual method (gmres). Both are easily im-
plemented in python.
x, flag, relres, iter = bicgstab(A, b, tol=tol,

maxiter=maxit, M1=M1, M2=M2, x0=x0)

x, flag, relres, iter = gmres(A, b, tol=tol, restart=restart,
maxiter=maxit, M=M1, x0=x0)

• tol = specified tolerance for convergence,
• maxit = maximum number of iterations,
• M1, M2 = preconditioning matrices,
• x0 = initial guess vector,
• restart = restart of iterations (gmres only).

2.5 Streamfunction Equations: Nonuniqueness

∇2𝜓 = 𝜔

with the periodic boundary conditions

𝜓 (−𝐿,𝑦, 𝑡) = 𝜓 (𝐿,𝑦, 𝑡),
𝜓 (𝑥,−𝐿, 𝑡) = 𝜓 (𝑥, 𝐿, 𝑡).

The solution can only be determined to an arbitrary constant.
To overcome this problem numerically, we simply observe that we
can arbitrarily add a constant to the solution. Or alternatively, we
can pin down the value of the streamfunction at a single location
in the computational domain. This constraint fixes the arbitrary
constant problem and removes the singularity from the matrix 𝐴.
Thus to fix the problem, we can simply pick an arbitrary point in
our computational domain𝜓𝑚𝑛 and fix its value.
A[0, 0] = 0

Then det𝐴 ≠ 0 and the matrix can be used in any of the linear
solution methods. Note that the choice of the matrix component
and its value are completely arbitrary.

2.6 Fast Fourier Transforms: Divide by Zero

˜̂
𝜓 = −

˜̂𝜔
𝑘2𝑥 + 𝑘2𝑦 + 𝜀

,

where eps is the command for generating a machine precision
number which is on the order of O(10−15). A second option, which
is more highly recommended, is to redefine the 𝑘𝑥 and 𝑘𝑦 vectors
associated with the wavenumbers in the 𝑥- and 𝑦-directions.
kx[0] = 1e-6
ky[0] = 1e-6

2.7 Time and Space Stepping Schemes: Method of lines
𝜕𝑢

𝜕𝑡
= 𝑐

𝜕𝑢

𝜕𝑥
,

Forward Euler.

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚)
𝑛 + 𝑐 Δ𝑡

2Δ𝑥

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
.

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚)
𝑛 + 𝜆

2

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
.

5

Leap-Frog (2,2).

𝑢
(𝑚+1)
𝑛 − 𝑢

(𝑚−1)
𝑛

2Δ𝑡
=

𝑐

2Δ𝑥

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
.

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚−1)
𝑛 + 𝜆

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
.

Leap-Frog (2,4).

𝑢
(𝑚+1)
𝑛 − 𝑢

(𝑚−1)
𝑛

2Δ𝑡
= 𝑐

−𝑢 (𝑥𝑛+2) + 8𝑢 (𝑥𝑛+1) − 8𝑢 (𝑥𝑛−1) + 𝑢 (𝑥𝑛−2)
12Δ𝑥

.

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚−1)
𝑛 + 𝜆

[
4
3

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
− 1
6

(
𝑢
(𝑚)
𝑛+2 − 𝑢

(𝑚)
𝑛−2

)]
.

Lax–Wendroff Scheme.

𝑢 (𝑥, 𝑡 + Δ𝑡) = 𝑢 (𝑥, 𝑡) + Δ𝑡 𝑢𝑡 (𝑥, 𝑡) +
Δ𝑡2

2
𝑢𝑡𝑡 (𝑥, 𝑡) + O(Δ𝑡3).

𝑢𝑡 = 𝑐 𝑢𝑥 , 𝑢𝑡𝑡 = 𝑐2 𝑢𝑥𝑥 .

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚)
𝑛 + 𝜆

2

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
+ 𝜆2

2

(
𝑢
(𝑚)
𝑛+1 − 2𝑢 (𝑚)

𝑛 + 𝑢 (𝑚)
𝑛−1

)
.

Backward Euler.

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚)
𝑛 + 𝜆

2

(
𝑢
(𝑚+1)
𝑛+1 − 𝑢

(𝑚+1)
𝑛−1

)
.

−𝜆

2
𝑢
(𝑚+1)
𝑛+1 + 𝑢 (𝑚+1)

𝑛 + 𝜆

2
𝑢
(𝑚+1)
𝑛−1 = 𝑢

(𝑚)
𝑛 ,

MacCormack Predictor–Corrector Scheme.

𝑢
(𝑃)
𝑛 = 𝑢

(𝑚)
𝑛 + 𝜆

(
𝑢
(𝑚)
𝑛+1 − 𝑢

(𝑚)
𝑛−1

)
.

𝑢
(𝑚+1)
𝑛 =

1
2

[
𝑢
(𝑚)
𝑛 + 𝑢 (𝑃)

𝑛 + 𝜆

(
𝑢
(𝑃)
𝑛+1 − 𝑢

(𝑃)
𝑛−1

)]
.

Scheme Stability in terms of 𝜆
Forward Euler unstable for all 𝜆
Backward Euler stable for all 𝜆
Leap-frog (2,2) stable for 𝜆 ≤ 1
Leap-frog (2,4) stable for 𝜆 ≤ 0.707

2.8 von Neumann Analysis
This assumes the solution is of the form

𝑢
(𝑚)
𝑛 = 𝑔𝑚 exp(𝑖𝜉𝑛ℎ), 𝜉 ∈

[
−𝜋

ℎ
,
𝜋

ℎ

]
,

where ℎ = Δ𝑥 is the spatial discretization parameter. Essentially this
assumes the solution can be constructed of Fourier modes. The key
then is to determine what happens to 𝑔𝑚 as𝑚 → ∞.

lim
𝑚→∞

|𝑔|𝑚 → ∞ unstable scheme,

lim
𝑚→∞

|𝑔|𝑚 ≤ 1 (< ∞) stable scheme.

• It is a general result that a scheme which is forward in time
and centered in space is unstable for the one-way wave equa-
tion. This assumes a standard forward discretization, not
something like Runge–Kutta.

• von Neumann analysis is rarely enough to guarantee stability,
i.e., it is necessary but not sufficient. Nonlinearity usually
kills the von Neumann analysis immediately. Thus a large
variety of nonlinear partial differential equations are beyond
the scope of a von Neumann analysis.

• Accuracy versus stability: it is always better to worry about
accuracy. An unstable scheme will quickly become apparent
by causing the solution to blow up to infinity, whereas an in-
accurate scheme will simply give you a wrong result without
indicating a problem.

2.9 Hyper-Diffusion
Consider the fourth-order diffusion equation

𝜕𝑢

𝜕𝑡
= −𝑐 𝜕4𝑢

𝜕𝑥4
.

Using forward Euler and central differences yields

𝑢
(𝑚+1)
𝑛 = 𝑢

(𝑚)
𝑛 − 𝜆

(
𝑢
(𝑚)
𝑛+2 − 4𝑢 (𝑚)

𝑛+1 + 6𝑢 (𝑚)
𝑛 − 4𝑢 (𝑚)

𝑛−1 + 𝑢
(𝑚)
𝑛−2

)
,

with CFL number
𝜆 =

𝑐Δ𝑡

Δ𝑥4
.

To double accuracy, one must set Δ𝑡 → Δ𝑡/16 and double the
number of spatial points, increasing runtime by a factor of 32. This
severe restriction is characteristic of numerical stiffness.

Stiffness does not arise from central differencing itself, but from
the physics of higher-order derivatives.

𝜕𝑢

𝜕𝑡
= −𝑐 (𝑖𝑘)4𝑢 = −𝑐𝑘4𝑢,

and large wavenumbers 𝑘 produce very large 𝑘4 terms, severely
restricting timestep sizes in any explicit scheme.

Key strategies for handling stiffness include
• using adaptive time-stepping,
• employing implicit schemes,
• choosing solvers specifically designed for stiff problems.

2.10 Operator Splitting Techniques

• Wave behavior:
𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝑥
– forward Euler: unstable for all 𝜆
– leap-frog (2,2): stable for 𝜆 ≤ 1

• Diffusion behavior:
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
– forward Euler: stable for 𝜆 ≤ 1/2
– leap-frog (2,2): unstable for all 𝜆

An advection–diffusion equation such as
𝜕𝜔

𝜕𝑡
+ [𝜓,𝜔] = 𝜈∇2𝜔

contains both advective and diffusive processes. Over a small time
interval Δ𝑡 , the dynamics can be split into

Δ𝑡 :
𝜕𝜔

𝜕𝑡
+ [𝜓,𝜔] = 0 (advection only),

Δ𝑡 :
𝜕𝜔

𝜕𝑡
= 𝜈∇2𝜔 (diffusion only).

6

This allows each physical effect to be advanced independently over
the same time step Δ𝑡 using schemes best suited to that component
(e.g., leap-frog for advection, Euler for diffusion). The accuracy
of operator splitting depends heavily on the time step Δ𝑡 . For an
equation of the form

𝜕𝑢

𝜕𝑡
= 𝐿𝑢 + 𝑁 (𝑢).

To improve accuracy, Strang splitting is used.
Δ𝑡

2
:

𝜕𝑢

𝜕𝑡
+ 𝐿𝑢 = 0,

Δ𝑡 :
𝜕𝑢

𝜕𝑡
+ 𝑁 (𝑢) = 0,

Δ𝑡

2
:

𝜕𝑢

𝜕𝑡
+ 𝐿𝑢 = 0.

This symmetrization reduces error and is generally preferred for
accuracy.

3 Spectral Methods for PDEs

𝐹 (𝑘) =
∫ ∞

−∞
𝑒−𝑖𝑘𝑥 𝑓 (𝑥) d𝑥,

𝑓 (𝑥) = 1
2𝜋

∫ ∞

−∞
𝑒𝑖𝑘𝑥𝐹 (𝑘) d𝑘.

F {𝑓 (𝑛) (𝑥)}(𝑘) = (𝑖𝑘)𝑛𝐹 (𝑘), F {𝑓 }(𝑘) = 𝐹 (𝑘) .

𝐹 (𝑘) =
𝑁∑︁
𝑛=1

𝑓 (𝑛) exp
[
− 𝑖

2𝜋 (𝑘 − 1)
𝑁

(𝑛 − 1)
]
, 1 ≤ 𝑘 ≤ 𝑁,

𝑓 (𝑛) = 1
𝑁

𝑁∑︁
𝑘=1

𝐹 (𝑘) exp
[
𝑖
2𝜋 (𝑘 − 1)

𝑁
(𝑛 − 1)

]
, 1 ≤ 𝑛 ≤ 𝑁 .

3.1 Fast Fourier transforms: Cooley–Tukey algorithm

(𝐹𝑁) 𝑗𝑘 = 𝜔
𝑗𝑘

𝑁
= exp

(
− 𝑖2𝜋 𝑗𝑘

𝑁

)
.

Coefficients of thematrix are points on the unit circle since |𝜔 𝑗𝑘

𝑁
| = 1.

They are also the basis functions for the Fourier transform.

𝜔2
2𝑁 = 𝜔𝑁 .

The FFT is a matrix operation

y = 𝐹𝑁 x.

Defining

x𝑒 =

©­­­­­­«

𝑥0
𝑥2
𝑥4
.
.
.

𝑥𝑁−2

ª®®®®®®¬
, x𝑜 =

©­­­­­­«

𝑥1
𝑥3
𝑥5
.
.
.

𝑥𝑁−1

ª®®®®®®¬
.

y𝑒 = 𝐹𝑀x𝑒 , y𝑜 = 𝐹𝑀x𝑜 .

Thus the computation size goes from 𝑂 (𝑁 2) to

𝑦𝑛 = 𝑦𝑒𝑛 + 𝜔𝑛
𝑁 𝑦𝑜𝑛, 𝑛 = 0, 1, 2, . . . , 𝑀 − 1,

𝑦𝑛+𝑀 = 𝑦𝑒𝑛 − 𝜔𝑛
𝑁 𝑦𝑜𝑛, 𝑛 = 0, 1, 2, . . . , 𝑀 − 1.

This is where the shift occurs in the FFT routine which maps the
domain 𝑥 ∈ [0, 𝐿] to [−𝐿, 0] and 𝑥 ∈ [−𝐿, 0] to [0, 𝐿]. The command
fftshift undoes this shift.

3.2 Chebychev Polynomials and Transform
Generally, one can expand in a variety of basis functions chosen to
match the geometry and boundary conditions of the problem.

• Bessel functions: radial, two-dimensional problems,
• Legendre polynomials: three-dimensional Laplace problems,
• Hermite–Gauss polynomials: Schrödinger equations with har-
monic potentials,

• Spherical harmonics: radial, three-dimensional problems,
• Chebychev polynomials: bounded one-dimensional domains.

Chebychev polynomials are defined as the solutions 𝑇𝑛 (𝑥) of the
Sturm–Liouville problem√︁

1 − 𝑥2
𝑑

𝑑𝑥

(√︁
1 − 𝑥2

𝑑𝑇𝑛

𝑑𝑥

)
+ 𝑛2𝑇𝑛 = 0, 𝑥 ∈ [−1, 1] .

As a self-adjoint Sturm–Liouville operator,
(1) Real eigenvalues: 𝜆𝑛 = 𝑛2.
(2) Real eigenfunctions: 𝑇𝑛 (𝑥).
(3) Orthogonality:∫ 1

−1
(1 − 𝑥2)−1/2𝑇𝑛 (𝑥)𝑇𝑚 (𝑥) 𝑑𝑥 =

𝜋

2
𝑐𝑛 𝛿𝑛𝑚,

where 𝑐0 = 2, 𝑐𝑛 = 1 for 𝑛 > 0.
(4) The set {𝑇𝑛 (𝑥)}∞𝑛=0 forms a complete basis.

Each Chebychev polynomial of degree 𝑛 can be defined via

𝑇𝑛 (cos𝜃) = cos(𝑛𝜃) .

From this, the first few polynomials follow

𝑇0 (𝑥) = 1,
𝑇1 (𝑥) = 𝑥,

𝑇2 (𝑥) = 2𝑥2 − 1,

𝑇3 (𝑥) = 4𝑥3 − 3𝑥,

𝑇4 (𝑥) = 8𝑥4 − 8𝑥2 + 1.

Introduce
𝑥 = cos𝜃, 𝜃 ∈ [0, 𝜋] .

Given a function 𝑓 (𝑥) on [−1, 1], define

𝑔(𝜃) = 𝑓 (cos𝜃).

𝑑𝑔

𝑑𝜃
= − 𝑓 ′ (𝑥) sin𝜃,

so that
𝑑𝑔

𝑑𝜃
= 0 at 𝜃 = 0, 𝜋,

corresponding to no-flux (Neumann) boundary conditions. This
structure allows the use of a discrete cosine transform in 𝜃 . A Cheby-
chev expansion of 𝑓 is written as

𝑓 (𝑥) =
∞∑︁
𝑘=0

𝑎𝑘 𝑇𝑘 (𝑥),

7

with coefficients determined by orthogonality

𝑎𝑘 =

∫ 1

−1

1
√
1 − 𝑥2

𝑓 (𝑥)𝑇𝑘 (𝑥) 𝑑𝑥.

These coefficients can be computed in𝑂 (𝑁 log𝑁) time via the DCT.
Some useful properties of the Chebychev polynomials include

• Three-term recurrence:

𝑇𝑛+1 (𝑥) = 2𝑥 𝑇𝑛 (𝑥) −𝑇𝑛−1 (𝑥).

• Bounds:

|𝑇𝑛 (𝑥) | ≤ 1, |𝑇 ′
𝑛 (𝑥) | ≤ 𝑛2 .

• Endpoint values:

𝑇𝑛 (±1) = (±1)𝑛 .

• Higher derivatives at the endpoints:

𝑑𝑝

𝑑𝑥𝑝
𝑇𝑛 (±1) = (±1)𝑛+𝑝

𝑝−1∏
𝑘=0

𝑛2 − 𝑘2

2𝑘 + 1
.

• Parity:

𝑇𝑛 (𝑥) is even if 𝑛 is even, and odd if 𝑛 is odd.

For 𝑛 collocation points, the 𝑥-grid is

𝑥𝑚 = cos
(
(2𝑚 − 1)𝜋

2𝑛

)
, 𝑚 = 1, 2, . . . , 𝑛.

Thus the points are uniformly spaced in 𝜃 but cluster near the end-
points 𝑥 = ±1. As the resolution 𝑛 increases, the spatial resolution
increases more strongly near the boundaries than in the interior.
Let 𝐿 be a linear operator and define

𝐿𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑏𝑛 𝑇𝑛 (𝑥),

while

𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑎𝑛 𝑇𝑛 (𝑥).

First derivative. For 𝐿𝑓 = 𝑓 ′ (𝑥), one has

𝑐𝑛 𝑏𝑛 = 2
∞∑︁

𝑝=𝑛+1
𝑝+𝑛 odd

𝑝 𝑎𝑝 ,

where 𝑐0 = 2, 𝑐𝑛 = 1 for 𝑛 > 0, and 𝑐𝑛 = 0 for 𝑛 < 0.

Multiplication by 𝑥 . For 𝐿𝑓 = 𝑥 𝑓 (𝑥),

𝑏𝑛 =
1
2
(𝑐𝑛−1𝑎𝑛−1 + 𝑎𝑛+1) .

Multiplication by 𝑥2. For 𝐿𝑓 = 𝑥2 𝑓 (𝑥),

𝑏𝑛 =
1
4
(𝑐𝑛−2𝑎𝑛−2 + (𝑐𝑛 + 𝑐𝑛−1)𝑎𝑛 + 𝑎𝑛+2) .

Here 𝑐0 = 2, 𝑐𝑛 = 0 for 𝑛 < 0, and 𝑐𝑛 = 1 for 𝑛 > 0.

3.3 Spectral Method Implementation

𝜕𝑢

𝜕𝑡
= 𝐿𝑢 + 𝑁 (𝑢), 𝐿 = 𝑎

𝑑2

𝑑𝑥2
+ 𝑏 𝑑

𝑑𝑥
+ 𝑐.

𝑑𝑢

𝑑𝑡
= 𝛼 (𝑘) 𝑢 + �𝑁 (𝑢) .

𝑎(𝑖𝑘)2𝑢 + 𝑏 (𝑖𝑘)𝑢 + 𝑐 𝑢 =
(
−𝑎𝑘2 + 𝑖𝑏𝑘 + 𝑐

)
𝑢 = 𝛼 (𝑘) 𝑢.

The nonlinear terms are a bit more difficult to handle,�𝑓 (𝑥) 𝑢𝑥 = F
(
𝑓 (𝑥) 𝑢𝑥

)
, 𝑢𝑥 = F −1(𝑖𝑘 𝑢) .�𝑢3𝑢𝑥𝑥 = F

(
𝑢3𝑢𝑥𝑥

)
, 𝑢𝑥𝑥 = F −1(−𝑘2𝑢) .

3.4 Pseudo-Spectral Techniques with Filtering

𝑑𝑢

𝑑𝑡
− 𝛼 (𝑘) 𝑢 = �𝑁 (𝑢) .

𝑑

𝑑𝑡

[
𝑢 exp

(
− 𝛼 (𝑘)𝑡

)]
= exp

(
− 𝛼 (𝑘)𝑡

) �𝑁 (𝑢) .

By defining
𝑣 = 𝑢 exp

(
− 𝛼 (𝑘)𝑡

)
,

the system of equations reduces to

𝑑𝑣

𝑑𝑡
= exp

(
− 𝛼 (𝑘)𝑡

) �𝑁 (𝑢),

𝑢 = 𝑣 exp
(
𝛼 (𝑘)𝑡

)
.

Thus, the linear, constant-coefficient terms are solved for explicitly,
and the numerical stiffness associated with the 𝐿𝑢 term is eliminated.

A. Accuracy.

• Finite Differences: Accuracy is determined by the Δ𝑥 and
Δ𝑦 chosen in the discretization. Accuracy is fairly easy to
compute and generally much worse than spectral methods.

• Spectral Method: Spectral methods rely on a global expan-
sion and are often called spectrally accurate. In particular,
spectral methods have infinite-order accuracy.

B. Implementation.

• Finite Differences: The greatest difficulty is generating the
correct sparse matrices. Further, when solving the resulting
system 𝐴𝑥 = 𝑏, it should always be checked whether det𝐴 =

0. If cond(A) > 1015, then det𝐴 ≈ 0 and steps must be taken
to solve the problem correctly.

• Spectral Method: The difficulty with using FFTs is the con-
tinual switching between the time or space domain and the
spectral domain.

C. Computational Efficiency.

• Finite Differences: The computational time for finite differ-
ences is determined by the size of the matrices and vectors
in solving 𝐴𝑥 = 𝑏. Generally speaking, you can guarantee
O(𝑁 2) efficiency by using LU decomposition.

• Spectral Method: The FFT algorithm is an O(𝑁 log𝑁) op-
eration. Thus, it is almost always guaranteed to be faster.

8

D. Boundary Conditions.

• Finite Differences: Finite differences are clearly superior
when considering boundary conditions. Implementing the
generic boundary conditions

𝛼 𝑢 (𝐿) + 𝛽
𝑑𝑢 (𝐿)
𝑑𝑥

= 𝛾

is easily done in the finite difference framework. Also, more
complicated computational domains may be considered. Gen-
erally, any computational domain which can be constructed
of rectangles is easily handled by finite difference methods.

• Spectral Method: Boundary conditions are the critical limi-
tation on using the FFT method. Specifically, only periodic
boundary conditions can be considered. The use of the dis-
crete sine or cosine transform allows for the consideration of
pinned or no-flux boundary conditions, but only odd or even
solutions are admitted respectively.

3.5 Boundary Conditions and the Chebychev Transform
Consider methods for handling nonperiodic boundary conditions.

Method 1: Periodic extension with FFTs. We can periodically extend
a general function 𝑓 (𝑥) in order to make the function itself periodic.
However, the periodic extension will in general generate discontinu-
ities in the periodically extended function. The discontinuities give
rise to Gibbs’ phenomenon, strong oscillations and errors which are
accumulated at the jump locations. This greatly affects the accuracy.

Method 2: Polynomial approximation with equi-spaced points. We
can consider polynomial approximation. We discretize the given
function 𝑓 (𝑥) with 𝑁 +1 equally spaced points and fit an 𝑁 th degree
polynomial through them. This amounts to

𝑓 (𝑥) ≈ 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + · · · + 𝑎𝑁 𝑥
𝑁 ,

where the coefficients 𝑎𝑛 are determined by an (𝑁 + 1) × (𝑁 + 1)
system of equations. However, in this case the Runge phenomenon
(polynomial oscillations) generally occurs. A polynomial of degree
𝑁 typically has𝑁−1 combinedmaxima andminima, and attempting
to fit a global high-order polynomial on an equi-spaced grid leads
to large oscillations near the boundaries.

Method 3: Polynomial approximation with clustered points. Con-
structs a polynomial approximation on a clustered grid rather than
an equally spaced grid. The clustered grid is chosen to be the Cheby-
chev points, which may be viewed as a projection of equally spaced
points on the unit circle down to the interval [−1, 1].

𝑥𝑛 = cos
(𝑛𝜋
𝑁

)
, 𝑛 = 0, 1, 2, . . . , 𝑁 .

This clustering of grid points toward the endpoints helps to greatly
reduce the effects of the Runge phenomenon. Let 𝑝 be a unique
polynomial of degree ≤ 𝑁 with

𝑝 (𝑥𝑛) = 𝑉𝑛, 0 ≤ 𝑛 ≤ 𝑁,

where 𝑉 (𝑥) is the function we approximate and 𝑉𝑛 = 𝑉 (𝑥𝑛).

𝑤𝑛 = 𝑝′ (𝑥𝑛) .

𝑤 = 𝐷𝑁 𝑣,

where𝐷𝑁 represents the action of differentiation, 𝑣 = (𝑉0, . . . ,𝑉𝑁)𝑇
and𝑤 = (𝑤0, . . . ,𝑤𝑁)𝑇 . By using polynomial interpolation of the
Lagrange form, one can construct the matrix elements of 𝑝 (𝑥) along
with the (𝑁 + 1) × (𝑁 + 1) differentiation matrix 𝐷𝑁 .

(𝐷𝑁)00 =
2𝑁 2 + 1

6
,

(𝐷𝑁)𝑁𝑁 = −2𝑁 2 + 1
6

,

(𝐷𝑁) 𝑗 𝑗 = −
𝑥 𝑗

2
(
1 − 𝑥2

𝑗

) , 𝑗 = 1, 2, . . . , 𝑁 − 1,

(𝐷𝑁)𝑖 𝑗 =
𝑐𝑖 (−1)𝑖+𝑗
𝑐 𝑗 (𝑥𝑖 − 𝑥 𝑗)

, 𝑖, 𝑗 = 0, 1, . . . , 𝑁 , 𝑖 ≠ 𝑗,

where the parameter 𝑐 𝑗 = 2 for 𝑗 = 0 or 𝑗 = 𝑁 , and 𝑐 𝑗 = 1 otherwise.
In general, 𝐷𝑚

𝑁
gives the𝑚th derivative. After transforming via

𝑥𝑛 = cos
(𝑛𝜋
𝑁

)
,

the discrete Fourier transform (DFT) can be used for real data, while
for complex data the regular FFT is used.

3.6 Computing Spectra: The Floquet–Fourier–Hill Method
We consider the eigenvalue problem

𝐿𝑣 = 𝜆𝑣,

where 𝐿 is a linear differential operator of the form

𝐿 =

𝑀∑︁
𝑘=0

𝑓𝑘 (𝑥) 𝜕𝑘𝑥 = 𝑓0 (𝑥) + 𝑓1 (𝑥) 𝜕𝑥 + · · · + 𝑓𝑀 (𝑥) 𝜕𝑀𝑥 ,

and the coefficients 𝑓𝑘 (𝑥) are assumed to be periodic with period 𝐿.

𝑓𝑘 (𝑥 + 𝐿) = 𝑓𝑘 (𝑥), 𝑘 = 0, . . . , 𝑀.

Thus the method is designed primarily for periodic problems. For
problems posed on the real line with solutions s.t. 𝑣 (±∞) → 0, one
can approximate the problem on a large but finite interval.

𝑓𝑘 (𝑥) =
∞∑︁

𝑗=−∞
𝑓𝑘,𝑗 exp

(
𝑖
2𝜋 𝑗
𝐿

𝑥

)
, 𝑘 = 0, . . . , 𝑀,

𝑓𝑘,𝑗 =
1
𝐿

∫ 𝐿/2

−𝐿/2
𝑓𝑘 (𝑥) exp

(
−𝑖 2𝜋 𝑗

𝐿
𝑥

)
𝑑𝑥, 𝑘 = 0, . . . , 𝑀.

Floquet theory states that every bounded solution can be written as

𝑤 (𝑥) = exp(𝑖𝜇𝑥) 𝜙 (𝑥),
where 𝜙 (𝑥) is periodic with the same period 𝐿 as the coefficients,

𝜙 (𝑥 + 𝐿) = 𝜙 (𝑥),
and 𝜇 can be taken in the interval 𝜇 ∈ [0, 2𝜋/𝐿). The factor exp(𝑖𝜇𝑥)
is called the Floquet multiplier, while 𝑖𝜇 is the Floquet exponent.

𝜙 (𝑥) =
∞∑︁

𝑗=−∞
𝜙 𝑗 exp

(
𝑖
2𝜋 𝑗
𝐿

𝑥

)
,

𝑤 (𝑥) = exp(𝑖𝜇𝑥)
∞∑︁

𝑗=−∞
𝜙 𝑗 exp

(
𝑖
2𝜋 𝑗
𝐿

𝑥

)
=

∞∑︁
𝑗=−∞

𝜙 𝑗 exp
(
𝑖𝑥

[
𝜇 + 2𝜋 𝑗

𝐿

])
,

𝜙 𝑗 =
1
𝐿

∫ 𝐿/2

−𝐿/2
𝜙 (𝑥) exp

(
−𝑖 2𝜋 𝑗

𝐿
𝑥

)
𝑑𝑥.

9

The 𝑛th Fourier coefficient of the transformed eigenvalue problem
∞∑︁

𝑚=−∞

𝑀∑︁
𝑘=0

𝑓𝑘,𝑛−𝑚
(
𝑖

[
𝜇 + 2𝜋𝑚

𝐿

])𝑘
𝜙𝑚 = 𝜆 𝜙𝑛, 𝑛 ∈ Z.

In other words, the original differential eigenvalue problem has
been mapped into an eigenvalue problem in Fourier space,

𝐿̂(𝜇) 𝜙 = 𝜆 𝜙,

where
𝜙 = (. . . , 𝜙−2, 𝜙−1, 𝜙0, 𝜙1, 𝜙2, . . .)𝑇 ,

and the entries of the bi-infinite matrix 𝐿̂(𝜇) are

𝐿̂(𝜇)𝑛𝑚 =

𝑀∑︁
𝑘=0

𝑓𝑘,𝑛−𝑚
(
𝑖

[
𝜇 + 2𝜋𝑚

𝐿

])𝑘
.

We truncate the bi-infinite system by retaining Fourier modes𝑚 =

−𝑁, . . . , 𝑁 . This yields a finite-dimensional eigenvalue problem

𝐿̂𝑁 (𝜇) 𝜙𝑁 = 𝜆𝑁 𝜙𝑁 ,

where 𝐿̂𝑁 (𝜇) is a (2𝑁 + 1) × (2𝑁 + 1) matrix and 𝜙𝑁 ∈ C2𝑁+1. The
computed eigenvalues 𝜆𝑁 provide numerical approximations to the
eigenvalues of the original operator 𝐿, and standard convergence
results for spectral methods can be used to analyze the accuracy of
this Floquet–Fourier–Hill discretization.

4 Finite Element Schemes for PDEs

4.1 Finite Element Basis
The primary reason to develop this technique is boundary condi-
tions, both complicated domains and general boundary conditions.
The key features of the discretization are as follows.

• The width and height of all triangles should be similar.
• All shapes used to span the computational domain should be
approximated by polygons.

Three groups of elements are considered basically.
• Simplex elements: linear polynomials are used,
• Complex elements: higher-order polynomials are used,
• Multiplex elements: rectangles are used instead of triangles.

4.2 Discretizing with Finite Elements and Boundaries
Considering the elliptic partial differential equation

𝜕

𝜕𝑥

(
𝑝 (𝑥,𝑦) 𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝑞(𝑥,𝑦) 𝜕𝑢

𝜕𝑦

)
+ 𝑟 (𝑥,𝑦)𝑢 = 𝑓 (𝑥,𝑦),

where, over part of the boundary,

𝑢 (𝑥,𝑦) = 𝑔(𝑥,𝑦) on 𝑆1,

𝑝 (𝑥,𝑦) 𝜕𝑢
𝜕𝑥

𝑛𝑥 + 𝑞(𝑥,𝑦) 𝜕𝑢
𝜕𝑦

𝑥𝑦 + 𝑔1 (𝑥,𝑦) 𝑢 = 𝑔2 (𝑥,𝑦) on 𝑆2 .

The method expresses the governing partial differential equation as
a functional that is to be minimized.

𝐼 (𝜙) =
∭

𝑉

𝐹

(
𝜙,

𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕𝜙

𝜕𝑧

)
𝑑𝑉 +

∬
𝑆

𝑔

(
𝜙,

𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕𝜙

𝜕𝑧

)
𝑑𝑆,

𝛿𝐹

𝛿𝜙
=

𝜕

𝜕𝑥

(
𝜕𝐹

𝜕𝜙𝑥

)
+ 𝜕

𝜕𝑦

(
𝜕𝐹

𝜕𝜙𝑦

)
+ 𝜕

𝜕𝑧

(
𝜕𝐹

𝜕𝜙𝑧

)
− 𝜕𝐹

𝜕𝜙
= 0.

𝐼 (𝑢) = 1
2

∬
𝐷

[
𝑝 (𝑥,𝑦)

(𝜕𝑢
𝜕𝑥

)2
+ 𝑞(𝑥,𝑦)

(𝜕𝑢
𝜕𝑦

)2
− 𝑟 (𝑥,𝑦)𝑢2

+2𝑓 (𝑥,𝑦)𝑢
]
𝑑𝑥 𝑑𝑦 +

∫
𝑆2

[
−𝑔2 (𝑥,𝑦) 𝑢 + 1

2
𝑔1 (𝑥,𝑦)𝑢2

]
𝑑𝑆.

𝛿𝐼𝐷

𝛿𝑢
=

𝜕

𝜕𝑥

(
𝑝 (𝑥,𝑦) 𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝑞(𝑥,𝑦) 𝜕𝑢

𝜕𝑦

)
+ 𝑟 (𝑥,𝑦)𝑢 − 𝑓 (𝑥,𝑦) = 0.

𝐼 (𝑢) = 1
2

∬
𝐷

[
𝑝

(
𝑚∑︁
𝑖=1

𝛾𝑖
𝜕𝜙𝑖

𝜕𝑥

)2
+ 𝑞

(
𝑚∑︁
𝑖=1

𝛾𝑖
𝜕𝜙𝑖

𝜕𝑦

)2
− 𝑟

(
𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖

)2
+ 2𝑓

(
𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖

)]
𝑑𝑥 𝑑𝑦 +

∫
𝑆2

−𝑔2

𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖 +
1
2
𝑔1

(
𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖

)2 𝑑𝑆.
𝜕𝐼

𝜕𝛾 𝑗
=

∬
𝐷

[
𝑝

𝑚∑︁
𝑖=1

𝛾𝑖
𝜕𝜙𝑖

𝜕𝑥

𝜕𝜙 𝑗

𝜕𝑥
+ 𝑞

𝑚∑︁
𝑖=1

𝛾𝑖
𝜕𝜙𝑖

𝜕𝑦

𝜕𝜙 𝑗

𝜕𝑦
− 𝑟

𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖𝜙 𝑗 + 𝑓 𝜙 𝑗

]
𝑑𝑥 𝑑𝑦

+
∫
𝑆2

[
−𝑔2𝜙 𝑗 + 𝑔1

𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖𝜙 𝑗

]
𝑑𝑆 = 0.

𝐴𝑥 = 𝑏,

where

𝑥 =

©­­­­«
𝛾1
𝛾2
.
.
.

𝛾𝑛

ª®®®®¬
, 𝐴 = (𝛼𝑖 𝑗), 𝑏 =

©­­­­«
𝛽1
𝛽2
.
.
.

𝛽𝑛

ª®®®®¬
,

with

𝛽𝑖 = −
∬

𝐷

𝑓 𝜙𝑖 𝑑𝑥 𝑑𝑦 +
∫
𝑆2

𝑔2𝜙𝑖 𝑑𝑆 −
𝑚∑︁

𝑘=𝑛+1
𝛼𝑖𝑘𝛾𝑘 ,

𝛼𝑖 𝑗 =

∬
𝐷

[
𝑝
𝜕𝜙𝑖

𝜕𝑥

𝜕𝜙 𝑗

𝜕𝑥
+ 𝑞 𝜕𝜙𝑖

𝜕𝑦

𝜕𝜙 𝑗

𝜕𝑦
− 𝑟 𝜙𝑖𝜙 𝑗

]
𝑑𝑥 𝑑𝑦 +

∫
𝑆2

𝑔1 𝜙𝑖𝜙 𝑗 𝑑𝑆.

𝜙𝑖 =

3∑︁
𝑗=1

𝑁
(𝑖)
𝑗

(𝑥,𝑦) 𝜙 (𝑖)
𝑗

=

3∑︁
𝑗=1

(
𝑎
(𝑖)
𝑗

+ 𝑏 (𝑖)
𝑗

𝑥 + 𝑐 (𝑖)
𝑗
𝑦
)
𝜙
(𝑖)
𝑗

.

The full numerical procedure consists of
(1) Discretizing the domain into triangular elements.
(2) Applying boundary values on triangles that touch boundary.
(3) Constructing the shape functions

𝑁
(𝑖)
𝑗

= 𝑎
(𝑖)
𝑗

+ 𝑏 (𝑖)
𝑗

𝑥 + 𝑐 (𝑖)
𝑗
𝑦.

(4) Computing the integrals for 𝛼𝑖 𝑗 and 𝛽 𝑗 .
(5) Forming the global matrix 𝐴 and vector 𝑏.
(6) Solving 𝐴𝑥 = 𝑏 for the coefficients 𝛾𝑖 .
(7) Producing the final solution

𝑢 (𝑥,𝑦) =
𝑚∑︁
𝑖=1

𝛾𝑖𝜙𝑖 (𝑥,𝑦).

Acknowledgments
To my parents and teachers, whose guidance and support have
shaped who I am today. And to my beloved Sunny Sun, your com-
panionship and encouragement enable me to go further on my
journey.

10

	Abstract
	1 Initial and Boundary Value Problems of Differential Equations
	1.1 Initial Value Problems
	1.2 Error Analysis for Time-Stepping Routines
	1.3 Advanced Time-Stepping Algorithms
	1.4 Boundary Value Problems
	1.5 Neural Networks for Time Stepping

	2 Finite Difference Schemes for PDEs
	2.1 Fast Poisson Solvers: The Fourier Transform
	2.2 Fast Fourier Transform: FFT, IFFT, FFTSHIFT, IFFTSHIFT
	2.3 Sparse Matrices: SPDIAGS, SPY
	2.4 Iterative Methods: BICGSTAB, GMRES
	2.5 Streamfunction Equations: Nonuniqueness
	2.6 Fast Fourier Transforms: Divide by Zero
	2.7 Time and Space Stepping Schemes: Method of lines
	2.8 von Neumann Analysis
	2.9 Hyper-Diffusion
	2.10 Operator Splitting Techniques

	3 Spectral Methods for PDEs
	3.1 Fast Fourier transforms: Cooley–Tukey algorithm
	3.2 Chebychev Polynomials and Transform
	3.3 Spectral Method Implementation
	3.4 Pseudo-Spectral Techniques with Filtering
	3.5 Boundary Conditions and the Chebychev Transform
	3.6 Computing Spectra: The Floquet–Fourier–Hill Method

	4 Finite Element Schemes for PDEs
	4.1 Finite Element Basis
	4.2 Discretizing with Finite Elements and Boundaries

	Acknowledgments

